基于改进YOLOv7和ByteTrack的煤矿关键岗位人员不安全行为识别

韩康, 李敬兆, 陶荣颖

韩康,李敬兆,陶荣颖. 基于改进YOLOv7和ByteTrack的煤矿关键岗位人员不安全行为识别[J]. 工矿自动化,2024,50(3):82-91. DOI: 10.13272/j.issn.1671-251x.2024030015
引用本文: 韩康,李敬兆,陶荣颖. 基于改进YOLOv7和ByteTrack的煤矿关键岗位人员不安全行为识别[J]. 工矿自动化,2024,50(3):82-91. DOI: 10.13272/j.issn.1671-251x.2024030015
HAN Kang, LI Jingzhao, TAO Rongying. Recognition of unsafe behaviors of key position personnel in coal mines based on improved YOLOv7 and ByteTrack[J]. Journal of Mine Automation,2024,50(3):82-91. DOI: 10.13272/j.issn.1671-251x.2024030015
Citation: HAN Kang, LI Jingzhao, TAO Rongying. Recognition of unsafe behaviors of key position personnel in coal mines based on improved YOLOv7 and ByteTrack[J]. Journal of Mine Automation,2024,50(3):82-91. DOI: 10.13272/j.issn.1671-251x.2024030015

基于改进YOLOv7和ByteTrack的煤矿关键岗位人员不安全行为识别

基金项目: 国家自然科学基金资助项目(52374154);安徽理工大学研究生创新基金资助项目(2022CX1008)。
详细信息
    作者简介:

    韩康(1997—),男,安徽涡阳人,硕士研究生,主要研究方向为嵌入式系统、深度学习,E-mail:3023803585@qq.com

    通讯作者:

    李敬兆(1964—),男,安徽淮南人,教授,博士,博士研究生导师,主要研究方向为人工智能、嵌入式系统,E-mail:jzhli@aust.edu.cn

  • 中图分类号: TD67

Recognition of unsafe behaviors of key position personnel in coal mines based on improved YOLOv7 and ByteTrack

  • 摘要: 应用人工智能技术对矿井提升机司机等煤矿关键岗位人员的行为进行实时识别,防止发生设备误操作等危险情况,对保障煤矿安全生产具有重要意义。针对基于图像特征的人员行为识别方法存在的抗背景干扰能力差与实时性不足问题,提出了一种基于改进YOLOv7和ByteTrack的煤矿关键岗位人员不安全行为识别方法。首先,基于MobileOne和C3对YOLOv7目标检测模型骨干与头部网络进行轻量化改进,提高模型推理速度;其次,融合ByteTrack跟踪算法,实现工作人员跟踪锁定,提高抗背景干扰能力;然后,采用MobileNetV2优化OpenPose的网络结构,提高对骨架特征的提取效率;最后,通过时空图卷积网络(ST−GCN)分析人体骨架关键点在时间序列上的空间结构和动态变化,实现对不安全行为的分析识别。实验结果表明:MobileOneC3−YOLO模型的精确率达93.7%,推理速度较YOLOv7模型提高了52%;融合ByteTrack的人员锁定模型锁定成功率达97.1%;改进OpenPose模型内存需求减少了170.3 MiB,在CPU与GPU上的推理速度分别提升了74.7%和54.9%;不安全行为识别模型对疲劳睡岗、离岗、侧身交谈和玩手机4种不安全行为的识别精确率达93.5%,推理速度达18.6 帧/s。
    Abstract: The application of artificial intelligence technology can real-time recognize the behavior of key position personnel in coal mines, such as mine hoist drivers, to prevent dangerous situations such as equipment misoperation. It is of great significance for ensuring coal mine safety production. The personnel behavior recognition method based on image features has problems of poor resistance to background interference and insufficient real-time performance. In order to solve the above problems, a coal mine key position personnel unsafe behavior recognition method based on improved YOLOv7 and ByteTrack is proposed. Firstly, based on MobileOne and C3, lightweight improvements are made to the backbone and head network of the YOLOv7 object detection model to improve the inference speed of the model. Secondly, integrating ByteTrack tracking algorithm, to achieve the tracking and locking of personnel is achieved, and the capability to resist background interference is improved. Thirdly, MobileNetV2 is used to optimize the network structure of OpenPose and improve the efficiency of skeleton feature extraction. Finally, the spatial temporal graph convolutional networks (ST−GCN) is used to analyze the spatial structure and dynamic changes of the key points of the human skeleton in the time series, achieving the analysis and recognition of unsafe behaviors. The experimental results show that the precision of the MobileOneC3−YOLO model reaches 93.7%, and the inference speed is improved by 52% compared to the YOLOv7 model. The success rate of personnel locking model integrating ByteTrack reaches 97.1%. The improved OpenPose model reduces memory requirements by 170.3 MiB. The inference speed on CPU and GPU is improved by 74.7% and 54.9%, respectively; The recognition precision of the unsafe behavior recognition model for four types of unsafe behaviors, including fatigue sleeping on duty, leaving work, side talking, and playing with mobile phones, reaches 93.5%, and the inference speed reaches 18.6 frames per second.
  • 图  1   不安全行为识别框架

    Figure  1.   Unsafe behavior recognition framework

    图  2   MobileOne模块结构

    Figure  2.   MobileOne module structure

    图  3   C3模块结构

    Figure  3.   C3 module structure

    图  4   MobileOneC3−YOLO人员检测模型

    Figure  4.   MobileOneC3−YOLO personnel detection model

    图  5   基于ByteTrack的跟踪流程

    Figure  5.   ByteTrack-based tracking process

    图  6   MobileNetV2倒残差结构

    Figure  6.   MobileNetV2 inverted residual structure

    图  7   改进OpenPose网络结构

    Figure  7.   Improved OpenPose network structure

    图  8   人体骨架时空图

    Figure  8.   Spatiotemporal map of human skeleton

    图  9   ST−GCN识别流程

    Figure  9.   ST−GCN recognition process

    图  10   煤矿关键岗位人员检测数据集

    Figure  10.   Key position personnel detection dataset in coal mines

    图  11   精确率曲线

    Figure  11.   Precision curves

    图  12   关键岗位人员锁定效果

    Figure  12.   Key position personnel locking effect

    图  13   损失函数曲线

    Figure  13.   Loss function curve

    图  14   煤矿关键岗位人员不安全行为识别效果

    Figure  14.   Unsafe behaviors recognition effect of key position personnel in coal mines

    表  1   评价指标

    Table  1   Evaluation indexes

    评价指标 定义 计算公式
    Precision(↑) 精确率 $ \dfrac{{{\mathrm{TP}}}}{{{\mathrm{TP}} + {\mathrm{FP}}}}$
    Params(↓) 参数量
    AP(↑) 关键点相似度为[0.50,0.55,···,0.95]时
    10个位置的平均精确率
    帧率(↑) 每秒处理的帧数 $ \dfrac{{总帧数}}{{时间}} $
    MOTA(↑) 多目标跟踪准确率 $ 1 - \dfrac{{{\mathrm{FN}} + {\mathrm{FP}} + {\mathrm{IDSW}}}}{{{\mathrm{GT}}}}$
    IDF1(↑) ID调和均值 $ \dfrac{{2{\mathrm{TP}}}}{{2{\mathrm{TP}} + {\mathrm{FP }}+ {\mathrm{FN}}}}$
    FP(↓) 误跟踪目标数
    FN(↓) 漏跟踪目标数
    下载: 导出CSV

    表  2   人员检测模型性能

    Table  2   Personnel detection model performance

    模型 精确率/% 参数量/107 单帧图像推理耗时/s
    YOLOv5 89.6 3.12 0.0395
    YOLOv7 91.1 3.72 0.0437
    YOLOv8 91.9 4.36 0.0475
    MobileOneC3−YOLO 93.7 2.51 0.0208
    下载: 导出CSV

    表  3   人员检测模型消融实验结果

    Table  3   Ablation experiment results of personnel detection model

    改进策略 精确率/% 参数量/107 单帧图像推理耗时/s
    MobileOne C3
    × × 91.1 3.72 0.043 7
    × 90.8 2.93 0.034 3
    × 92.1 2.71 0.035 9
    93.7 2.51 0.020 8
    下载: 导出CSV

    表  4   跟踪算法对比实验结果

    Table  4   Comparison experiment results of tracking algorithms

    算法IDF1/%MOTA/%FPFN帧率/(帧·s−1
    SORT75.573.64 85621 37621.3
    DeepSort85.781.36 51219 83714.7
    ByteTrack88.185.55 53913 55729.6
    下载: 导出CSV

    表  5   关键岗位人员锁定结果统计

    Table  5   Statistics on the key position personnel locking results

    关键岗位人员成功锁定次数平均成功
    锁定次数
    总体锁定
    成功率/%
    1轮2轮3轮
    矿井提升机司机6059605997.10
    绞车司机59605758
    变电站值班人员58605958
    井口信把工59586058
    下载: 导出CSV

    表  6   不安全行为识别模型性能测试结果

    Table  6   Performance test results of unsafe behaviors recognition model

    模型 AP/% 模型内存/MiB 单帧图像推理耗时/s
    CPU:12900K GPU:3090
    OpenPose 74.6 203.8 0.8326 0.0573
    改进OpenPose 72.8 33.5 0.2103 0.0258
    下载: 导出CSV

    表  7   不安全行为识别模型消融实验结果

    Table  7   Ablation experiment results of unsafe behaviors recognition model

    改进策略精确率/%帧率/(帧·s−1
    YOLOv7+OpenPose91.87.1
    YOLOv7+改进OpenPose92.112.5
    MobileOneC3−YOLO+OpenPose91.613.7
    MobileOneC3−YOLO+改进OpenPose93.518.6
    下载: 导出CSV
  • [1] 李琰,刘珍,陈南希. 基于矿工大数据的不安全行为主题挖掘与语义分析[J]. 煤矿安全,2023,54(9):254-257.

    LI Yan,LIU Zhen,CHEN Nanxi. Topic mining and semantic analysis of unsafe behavior based on miner big data[J]. Safety in Coal Mines,2023,54(9):254-257.

    [2] 黄辉,张雪. 煤矿员工不安全行为研究综述[J]. 煤炭工程,2018,50(6):123-127.

    HUANG Hui,ZHANG Xue. Review of research on unsafe behavior of miners[J]. Coal Engineering,2018,50(6):123-127.

    [3] 丁恩杰,俞啸,夏冰,等. 矿山信息化发展及以数字孪生为核心的智慧矿山关键技术[J]. 煤炭学报,2022,47(1):564-578.

    DING Enjie,YU Xiao,XIA Bing,et al. Development of mine informatization and key technologies of intelligent mines[J]. Journal of China Coal Society,2022,47(1):564-578.

    [4] 沈铭华,马昆,杨洋,等. AI智能视频识别技术在煤矿智慧矿山中的应用[J]. 煤炭工程,2023,55(4):92-97.

    SHEN Minghua,MA Kun,YANG Yang,et al. Application of AI identification technology in intelligent coal mine[J]. Coal Engineering,2023,55(4):92-97.

    [5] 刘浩,刘海滨,孙宇,等. 煤矿井下员工不安全行为智能识别系统[J]. 煤炭学报,2021,46(增刊2):1159-1169.

    LIU Hao,LIU Haibin,SUN Yu,et al. Intelligent recognition system for unsafe behavior of coal mine employees underground[J]. Journal of China Coal Society,2021,46(S2):1159-1169.

    [6] 温廷新,王贵通,孔祥博,等. 基于迁移学习与残差网络的矿工不安全行为识别[J]. 中国安全科学学报,2020,30(3):41-46.

    WEN Tingxin,WANG Guitong,KONG Xiangbo,et al. Identification of miners' unsafe behaviors based on transfer learning and residual network[J]. China Safety Science Journal,2020,30(3):41-46.

    [7] 李占利,权锦成,靳红梅. 基于3D−Attention与多尺度的矿井人员行为识别算法[J]. 国外电子测量技术,2023,42(7):95-104. DOI: 10.3969/j.issn.1002-8978.2023.07.014

    LI Zhanli,QUAN Jincheng,JIN Hongmei. Mine personnel behavior recognition algorithm based on 3D−Attention and multi-scale[J]. Foreign Electronic Measurement Technology,2023,42(7):95-104. DOI: 10.3969/j.issn.1002-8978.2023.07.014

    [8] 王宇,于春华,陈晓青,等. 基于多模态特征融合的井下人员不安全行为识别[J]. 工矿自动化,2023,49(11):138-144.

    WANG Yu,YU Chunhua,CHEN Xiaoqing,et al. Recognition of unsafe behaviors of underground personnel based on multi modal feature fusion[J]. Journal of Mine Automation,2023,49(11):138-144.

    [9]

    WANG C-Y,BOCHKOVSKIY A,LIAO H-Y M. YOLOv7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,Vancouver,2023:7464-7475.

    [10]

    VASU P K A,GABRIEL J,ZHU J,et al. An improved one millisecond mobile backbone[EB/OL]. [2024-02-20]. https://arxiv.org/pdf/2206.04040.pdf.

    [11] 黄家才,赵雪迪,高芳征,等. 基于改进YOLOv5s的草莓多阶段识别检测轻量化算法[J]. 农业工程学报,2023,39(21):181-187. DOI: 10.11975/j.issn.1002-6819.202307186

    HUANG Jiacai, ZHAO Xuedi, GAO Fangzheng, et al. Recognizing and detecting the strawberry at multi-stages using improved lightweight YOLOv5s[J]. Transactions of the Chinese Society of Agricultural Engineering,2023,39(21):181-187. DOI: 10.11975/j.issn.1002-6819.202307186

    [12]

    ZHANG Yifu,SUN Peize,JIANG Yi,et al. ByteTrack:multi-object tracking by associating every detection box[EB/OL]. [2024-02-20]. https://arxiv.org/abs/2110.06864v1.

    [13]

    CAO Zhe,SIMON T,WEI S-E,et al. Realtime multi-person 2D pose estimation using part affinity fields[C]. IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,2017:1302-1310.

    [14]

    SIMONYAN K,ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2024-02-20]. https://arxiv.org/pdf/1409.1556.pdf.

    [15]

    SANDLER M,HOWARD A,ZHU Menglong,et al. MobileNetV2:inverted residuals and linear bottlenecks[EB/OL]. [2024-02-20]. http://arxiv.org/pdf/1801.04381.pdf.

    [16]

    YAN Sijie,XIONG Yuanjun,LIN Dahua. Spatial temporal graph convolutional networks for skeleton-based action recognition[C]. AAAI Conference on Artificial Intelligence,New Orleans,2018:5361-5368.

    [17]

    BAI Shaojie,KOLTER J Z,KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL]. [2024-02-20]. https://arxiv.org/pdf/1803.01271.pdf.

    [18]

    MILAN A,LEAL-TAIXÉ L,REID I,et al. MOT16:a benchmark for multi-object tracking[EB/OL]. [2024-02-20]. https://arxiv.org/pdf/1603.00831.pdf.

    [19]

    BEWLEY A,GE Zongyuan,OTT L,et al. Simple online and realtime tracking[C]. IEEE International Conference on Image Processing,Phoenix,2016:3464-3468.

    [20]

    WOJKE N,BEWLEY A,PAULUS D. Simple online and realtime tracking with a deep association metric[C]. IEEE International Conference on Image Processing,Beijing,2017:3645-3649.

    [21]

    LIN T−Y,MAIRE M,BELONGIE S,et al. Microsoft COCO:common objects in context[EB/OL]. [2024-02-20]. https://www.microsoft.com/en-us/research/wp-content/uploads/2014/09/LinECCV14coco.pdf.

  • 期刊类型引用(12)

    1. 贺耀宜,代左朋,杨耀,屈世甲,张清,孙旭峰,张涛. 采煤工作面CH_4大样本数据感知关键技术及监测模式研究. 工矿自动化. 2024(11): 17-25+91 . 本站查看
    2. 陈越,陈炜峰. 用于无线传感网络节点电流波形测量的检测电路设计. 价值工程. 2023(17): 127-129 . 百度学术
    3. 陈贤,周澍. 一种低功耗综采工作面人员定位系统设计. 煤矿安全. 2023(11): 218-221 . 百度学术
    4. 廖成,乔伟. WTC-I瓦斯突出参数并发测量软件设计与应用. 现代矿业. 2023(11): 216-219 . 百度学术
    5. 卓敏敏,赵立厂. 适应矿井线形空间的BLE多连接网络移动节点漫游通信方法. 煤矿机电. 2023(06): 10-14 . 百度学术
    6. 侯远韶. 基于射频供能的无线传感网络数据收集系统设计. 信息技术与信息化. 2022(02): 129-132 . 百度学术
    7. 王伟,陈贤,金业勇. 基于蓝牙传输的便携式定位仪设计与实现. 煤矿安全. 2022(12): 121-124 . 百度学术
    8. 宋庆武,蒋峰,李春鹏,朱凯,蔡兵. 基于物联网技术的电力系统地下沟管环境监测系统应用研究. 电子设计工程. 2021(02): 94-98 . 百度学术
    9. 曹礼勇,钟永彦,陈娟,华亮. 基于BLE和Wi-Fi的建筑能耗监测系统设计. 工程设计学报. 2021(05): 654-661 . 百度学术
    10. 王德龙. 基于Arduino上蓝牙低功耗的研究. 数码世界. 2020(01): 29 . 百度学术
    11. 梁斌,林美娇,何海军. 低功耗蓝牙DA14585的无线传感器网络应用分析. 电子测试. 2020(05): 91-92+61 . 百度学术
    12. 叶长青,陈虎,曾陈萍,王雪. 基于STC12C5A60S2的家庭智能安防系统的设计与实现. 数字技术与应用. 2020(12): 126-128 . 百度学术

    其他类型引用(2)

图(14)  /  表(7)
计量
  • 文章访问数:  325
  • HTML全文浏览量:  138
  • PDF下载量:  63
  • 被引次数: 14
出版历程
  • 收稿日期:  2024-03-05
  • 修回日期:  2024-03-27
  • 网络出版日期:  2024-04-10
  • 刊出日期:  2024-03-19

目录

    /

    返回文章
    返回