A pose recognition method for warehouse cleaning robots based on extended Kalman filtering
-
摘要: 煤矿水仓巷道光照强度不均匀且结构化特征明显,传统基于视觉的机器人位姿识别方法识别不准确,而单一的机器人定位技术如自适应蒙特卡洛(AMCL)方法随着清仓机器人的长时间运行,输出的位姿信息存在较大累计误差,易出现煤泥清理不干净、与两侧巷道发生碰撞的情况。针对上述问题,提出了一种基于扩展卡尔曼滤波的多传感器融合清仓机器人位姿识别方法。首先搭建多传感器融合算法框架,建立里程计、惯性测量装置、激光雷达数据采集模型;其次基于扩展卡尔曼滤波原理,以惯性测量装置角度信息建立观测方程,结合里程计位姿信息,得到第1次融合的清仓机器人位姿矩阵,利用激光雷达的位置信息与之前的位姿矩阵进行迭代,得到第2次融合的清仓机器人位姿矩阵;最后采用互补滤波算法对融合后的清仓机器人位姿矩阵进行处理,输出最终的清仓机器人位姿矩阵。实验结果表明:在直线位姿识别中2次的最大位置误差为0.04 m,最大姿态角误差为0.05 rad;在模拟巷道实验中的最大位置误差为0.1 m,最大姿态角误差为0.085 rad;与AMCL方法相比,基于扩展卡尔曼滤波的清仓机器人位姿识别方法在减少清仓机器人运行过程中的累计误差方面表现出显著的有效性。Abstract: The lighting intensity of coal mine water storage roadways is uneven and the structured features are obvious. Traditional vision based robot pose recognition methods are not accurate. The single robot positioning techniques such as Adaptive Monte Carlo localization (AMCL) method have significant cumulative errors in the output pose information with the long-term operation of the cleaning robot. It is easy to encounter situations where the coal slurry is not cleaned thoroughly and collides with both sides of the roadway. In order to solve the above problem, a multi-sensor fusion clearance robot pose recognition method based on extended Kalman filtering is proposed. Firstly, the method builds a multi-sensor fusion algorithm framework and establishes models for odometer, inertial measurement devices, and LiDAR data acquisition. Secondly, based on the principle of extended Kalman filtering, an observation equation is established using the angle information of the inertial measurement device. Combined with the odometer pose information, the first fusion of the clearance robot pose matrix is obtained. Then, the position information of the lidar is iterated with the previous pose matrix to obtain the second fused clearance robot pose matrix. Finally, the complementary filtering algorithm is used to process the pose matrix of the clearance robot after two fusion and output the final pose matrix of the clearance robot. The experimental results show that the maximum position error in linear pose recognition is 0.04 m, and the maximum attitude angle error is 0.05 rad. The maximum position error in the simulated roadway experiment is 0.1 m, and the maximum attitude angle error is 0.085 rad. Compared with the AMCL method, the pose recognition method of the warehouse cleaning robot based on extended Kalman filtering shows significant effectiveness in reducing the cumulative error during the operation of the warehouse cleaning robot.
-
0. 引言
刮板输送机是煤矿工作面唯一的运输设备,链条是其关键运行部件。当出现刮板输送机断链故障时,若不能及时发现,将导致链条堆积,严重影响煤矿生产安全和效率。因此,众多专家学者对刮板输送机断链监测技术进行了研究。初期大多针对刮板输送机断链故障原因和预防措施进行分析,建立链条的强度条件[1]和有限元仿真模型[2],探究卡、断链故障发生后刮板输送机动力学特性和链环之间接触力的变化规律[3],并对落煤冲击条件下的链条进行动力学分析[4],进而对断链后链条张力响应进行仿真研究[5]。目前刮板输送机断链监测方法主要包括压力监测法、差速监测法和视觉监测法[6]。吴孙阳等[7]设计了一种基于应力突变的刮板输送机断链监测系统,利用应变传感器测量与不同链条啮合的链轮轮齿受力面的应变,及时检测断链隐患;Zhang Xing等[8]提出了一种基于溜槽振动分析的刮板输送机链条故障检测策略,利用加速度传感器检测刮板输送机断链故障引起的溜槽振动信号,通过振幅识别断链故障;Hua Yilian等[9]通过安装在刮板两侧的超宽带节点实时反馈刮板是否出现倾斜情况,实现对刮板输送机断链故障的间接监测;高昌乐等[10]以刮板输送机链轮转速差为依据,当转速差超过预警值时,判断刮板输送机链条出现断裂现象;崔卫秀等[11]利用计算机诊断和AI视频识别技术,通过图像采集、分析和处理,对链条状态进行检测;Zou Huadong等[12]提出了一种基于划痕特征检测的视觉识别方法,通过监测识别链条划痕预测刮板输送机断链故障;Wang Zisheng等[13]采用Plackett−Burman试验确定刮板输送机链条裂纹深度、初始角度和拉伸载荷,为避免刮板输送机断链故障提供了参考。
煤矿井下工作面环境复杂恶劣,常规在刮板输送机中部槽或刮板上安装传感器检测断链的方法常出现传感器损坏现象,因此,基于视频监控的断链监测方法得到越来越多的应用。早期的煤矿井下视频监控技术主要是将井下各监控点的图像传输至地面中心监控室显示,并对设备参数异常、设备工作状态等情况进行人工识别。随着AI技术的快速发展,视频AI识别逐渐被引入煤矿井下安全监控领域。基于视频AI识别技术的刮板输送机断链监测技术[14-18]以AI算法为核心,依据视频AI摄像仪对井下刮板输送机断链状态进行实时监控。此类算法适应性强,能够解决复杂的非线性问题,但对数据样本集的要求较高,在线学习能力差,导致断链监测准确率和精确率相对较低。此外,现有技术通过采集样本数据进行离线算法训练,导致算法在陌生环境中适应性差、检测精度和鲁棒性不足。因此,提出一种基于在线贯序极限学习机(Online Sequential Extreme Learning Machine,OSELM)网络的刮板输送机断链智能监测技术。OSELM网络由极限学习机(Extreme Learning Machine,ELM)改进而来,采用增量式在线学习算法,通过分析样本数据集的自相关性和输入与输出关系,自动随机确定网络隐含层节点数量,不需要复杂的超参数调优和迭代优化过程,具备训练速度快、精度高、泛化能力强等优点。此外,OSELM网络能够更好地适应流式样本数据的训练,进而对网络输出权重进行更新迭代,使网络始终保持在最优状态,在处理不断变化的样本数据时具有显著优势。
1. ELM网络模型
ELM是一类单隐含层的FNN(Feedforward Neuron Network,前馈神经网络)[19-20]。ELM网络拓扑如图1所示,其包含n个输入层节点、L个隐含层节点和m个输出层节点。
ELM网络与传统人工智能网络不同,它随机获取神经网络输入层权值和隐含层偏置,利用最小二乘法准则,通过计算穆尔−彭罗斯广义逆矩阵得出网络输出权值,具有训练速度快、学习误差小等优势,且泛化性能极高[21-23]。
ELM网络在学习训练过程中随机获取样本{(xi,ti)},其中xi为样本输入,ti为样本输出,i=1,2$ ,\cdots, $n。通过ELM网络隐含层S型激活函数g(·)计算隐含层输出函数:
$$ {h}_{k}\left({x}_{i}\right)=g\left({{\boldsymbol{w}}}_{k},{{\boldsymbol{b}}}_{k},{x}_{i}\right)=g\left({{\boldsymbol{w}}}_{k} {x}_{i}+{{\boldsymbol{b}}}_{k}\right) $$ (1) 式中:wk为第k个隐含层节点的输入权重矩阵,k=1,2$,\cdots , $L;bk为第k个隐含层节点偏置矩阵。
ELM网络模型可表示为
$$ {t}_{i}={\displaystyle \sum _{k=1}^{L}{{\boldsymbol{\beta}} }_{k}g\left({{\boldsymbol{w}}}_{k} {{{x}}}_{i}+{{\boldsymbol{b}}}_{k}\right)} $$ (2) 式中βk为ELM网络第k个隐含层节点的输出权重矩阵。
将训练ELM网络转换为求解一个期望输出线性矩阵系统问题,表示为
$$ {\boldsymbol{T}} = {\boldsymbol{H\beta}} $$ (3) 式中:T为ELM网络输出矩阵;H为隐含层输出矩阵;β为ELM网络输出权重矩阵。
为了最小化所有样本的整体预测误差,ELM网络通过最小二乘法计算网络输出权重矩阵β。
$$ {\boldsymbol{\beta}} {\text{ = }}{{\boldsymbol{H}}^\dagger }{\boldsymbol{T}} = {\left( {{{\boldsymbol{H}}^{\text{T}}}{\boldsymbol{H}}} \right)^{ - 1}}{{\boldsymbol{H}}^{\text{T}}}{\boldsymbol{T}} $$ (4) 式中${{\boldsymbol{H}}^\dagger }$为ELM网络输出矩阵H的穆尔−彭罗斯广义逆矩阵。
2. OSELM网络模型
传统ELM网络不能实时处理动态模型,对此,提出能产生大量序列化数据的在线增量生长式ELM网络,即OSELM网络。其将单隐含层神经网络输出权重的学习训练过程分为2个阶段:① 初始化阶段,通过海量刮板输送机断链故障状态的样本训练得到网络输出权重矩阵β。② 序列化阶段,利用序列化在线样本数据集不断完善β。
2.1 OSELM网络离线样本初始化训练
将获取的刮板输送机断链离线样本进行高精度可靠筛选,得到高质量刮板输送机断链离线样本。将离线样本输入OSELM网络进行初始化训练,同时将学习到的知识和经验存储到隐含层节点。OSELM网络根据离线样本特征随机获取隐含层节点的输入权重矩阵wk及偏置矩阵bk,结合广义逆矩阵计算方法,对批量离线样本数据进行训练,计算出初始化的网络输出权重矩阵β0。
$$ {{\boldsymbol{\beta}} ^0} = {\left( {{{\boldsymbol{H}}_0}^{\text{T}}{{\boldsymbol{H}}_0}} \right)^{ - 1}}{{\boldsymbol{H}}_0^{\text{T}}}{{\boldsymbol{T}}_0} $$ (5) 式中:H0为初始化的隐含层输出矩阵;T0为初始化的网络输出矩阵。
将β0作为OSELM网络序列化迭代阶段的初始权重,进一步完善网络。
2.2 OSELM网络输出权重序列化迭代
定义隐含层输出矩阵为
$$ {\boldsymbol{H}} = \left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{H}}_0}} \\ {{{\boldsymbol{H}}_1}} \end{array}} \right] $$ (6) 式中H1为第1次迭代后的隐含层输出矩阵,为已知量。
定义ELM网络输出矩阵为
$$ {\boldsymbol{T}} = \left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{T}}_0}} \\ {{{\boldsymbol{T}}_1}} \end{array}} \right] $$ (7) 式中T1为第1次迭代后的网络输出矩阵,为已知量。
因此,ELM网络输出权重矩阵更新为
$$ \begin{split} {\boldsymbol{\beta}} =& {\left( {{{\boldsymbol{H}}^{\text{T}}}{\boldsymbol{H}}} \right)^{ - 1}}{{\boldsymbol{H}}^{\text{T}}}{\boldsymbol{T}}= \\ &{\left\{ {{{\left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{H}}_0}} \\ {{{\boldsymbol{H}}_1}} \end{array}} \right]}^{\text{T}}}\left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{H}}_0}} \\ {{{\boldsymbol{H}}_1}} \end{array}} \right]} \right\}^{ - 1}}{\left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{H}}_0}} \\ {{{\boldsymbol{H}}_1}} \end{array}} \right]^{\text{T}}}\left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{T}}_0}} \\ {{{\boldsymbol{T}}_1}} \end{array}} \right]= \\ & {\left( {{{\boldsymbol{H}}_0^{\text{T}}}{{\boldsymbol{H}}_0} + {{\boldsymbol{H}}_1^{\text{T}}}{{\boldsymbol{H}}_1}} \right)^{ - 1}}\left( {{{\boldsymbol{H}}_0^{\text{T}}}{{\boldsymbol{T}}_0} + {{\boldsymbol{H}}_1^{\text{T}}}{{\boldsymbol{T}}_1}} \right) \end{split} $$ (8) 令P0=(${{\boldsymbol{H}}_0^{\text{T}}}{{\boldsymbol{H}}_0} $)−1,P1=(${{\boldsymbol{H}}_0^{\text{T}}}{{\boldsymbol{H}}_0} $+${{\boldsymbol{H}}_1^{\text{T}}}{{\boldsymbol{H}}_1} $)−1,可得到P1和P0的迭代计算公式:
$$ {{\boldsymbol{P}}_1} = {\left( {{{\boldsymbol{P}}_0} + {{\boldsymbol{H}}_1^{\text{T}}}{{\boldsymbol{H}}_1}} \right)^{ - 1}} $$ (9) 根据Sherman−Morrison矩阵求逆公式[24],可将式(9)简化为
$$ {{\boldsymbol{P}}_1} = {{\boldsymbol{P}}_0} - \frac{{{{\boldsymbol{P}}_0}{{\boldsymbol{H}}_1^{\text{T}}}{{\boldsymbol{H}}_1}{{\boldsymbol{P}}_0}}}{{1 + {{\boldsymbol{H}}_1}{{\boldsymbol{P}}_0}{{\boldsymbol{H}}_1^{\text{T}}}}} $$ (10) 将式(9)两边同时求逆,得
$$ {{\boldsymbol{P}}_1^{ - 1} }= {{\boldsymbol{P}}_0^{ - 1}} + {{\boldsymbol{H}}_1^{\text{T}}}{{\boldsymbol{H}}_1} $$ (11) 通过式(11)可推导出${{\boldsymbol{P}}_0^{ - 1}} $计算公式:
$$ {{\boldsymbol{P}}_0^{ - 1}} = {{\boldsymbol{P}}_1^{ - 1}} - {{\boldsymbol{H}}_1^{\text{T}}}{{\boldsymbol{H}}_1} $$ (12) 将P0=(${{\boldsymbol{H}}_0^{\text{T}}}{{\boldsymbol{H}}_0} $)−1代入式(5),得
$$ {{\boldsymbol{\beta}} ^0} = {\left( {{{\boldsymbol{H}}_0^{\text{T}}}{{\boldsymbol{H}}_0}} \right)^{ - 1}}{{\boldsymbol{H}}_0^{\text{T}}}{{\boldsymbol{T}}_0} = {P_0}{{\boldsymbol{H}}_0^{\text{T}}}{{\boldsymbol{T}}_0} $$ (13) $$ {{\boldsymbol{H}}_0^{\text{T}}}{{\boldsymbol{T}}_0} = {{\boldsymbol{P}}_0^{ - 1}}{{\boldsymbol{\beta}} ^0} = \left( {{{\boldsymbol{P}}_1^{ - 1}} - {{\boldsymbol{H}}_1^{\text{T}}}{{\boldsymbol{H}}_1}} \right){{\boldsymbol{\beta}} ^0} $$ (14) 将P1=(${{{\boldsymbol{H}}_0^{\text{T}}}{{\boldsymbol{H}}_0}} $+${{{\boldsymbol{H}}_1^{\text{T}}}{{\boldsymbol{H}}_1}} $)−1和式(14)同时代入式(8),得到第1次迭代后的网络输出权重矩阵:
$$\begin{split} {{\boldsymbol{\beta}} ^1} = &{\left( {{{\boldsymbol{H}}_0^{\text{T}}}{{\boldsymbol{H}}_0} + {{\boldsymbol{H}}_1^{\text{T}}}{{\boldsymbol{H}}_1}} \right)^{ - 1}}\left( {{{\boldsymbol{H}}_0^{\text{T}}}{{\boldsymbol{T}}_0} + {{\boldsymbol{H}}_1^{\text{T}}}{{\boldsymbol{T}}_1}} \right) = \\ &{{\boldsymbol{P}}_1}\left[ {\left( {{{\boldsymbol{P}}_1^{ - 1}} - {{\boldsymbol{H}}_1^{\text{T}}}{{\boldsymbol{H}}_1}} \right){{\boldsymbol{\beta}} ^0} + {{\boldsymbol{H}}_1^{\text{T}}}{{\boldsymbol{T}}_1}} \right] = \\ &{{\boldsymbol{\beta}} ^0} + {{\boldsymbol{P}}_1}{{\boldsymbol{H}}_1^{\text{T}}}\left( {{{\boldsymbol{T}}_1} - {{\boldsymbol{H}}_1}{{\boldsymbol{\beta}} ^0}} \right) \end{split} $$ (15) 定义OSELM网络第k+1次迭代的网络输出权重矩阵为βk+1,中间参数矩阵为Pk+1。根据OSELM网络在线迭代关系,可由第k次迭代参数计算出第k+1次迭代参数,在线学习递推公式为
$$ {{\boldsymbol{P}}_{k + 1}} = {{\boldsymbol{P}}_k} - \frac{{{{\boldsymbol{P}}_k}{{\boldsymbol{H}}_{k + 1}^{\text{T}}}{{\boldsymbol{H}}_{k + 1}}{{\boldsymbol{P}}_k}}}{{1 + {{\boldsymbol{H}}_{k + 1}}{{\boldsymbol{P}}_k}{{\boldsymbol{H}}_{k + 1}^{\text{T}}}}}\qquad $$ (16) $$ {{\boldsymbol{\beta}} ^{k + 1}} = {{\boldsymbol{\beta}} ^k} + {{\boldsymbol{P}}_{k + 1}}{{\boldsymbol{H}}_{k + 1}^{\text{T}}}\left( {{{\boldsymbol{T}}_{k + 1}} - {{\boldsymbol{H}}_{k + 1}}{{\boldsymbol{\beta}} ^k}} \right) $$ (17) 2.3 OSELM网络训练流程
OSELM网络初始化阶段训练流程如下。
1) 获取样本数据集D={(xi, ti)},在其中选取n0(n0≥L)个高可靠度采样数据并组成集合D0={(xj, tj)},j=1, 2$, \cdots ,n_0 $,将其输入OSELM网络。
2) OSELM网络随机获取隐含层节点的输入权重矩阵wk和偏置矩阵bk,并计算初始化的隐含层输出矩阵H0。
3) 计算初始化的网络输出权重矩阵β0。
序列化阶段训练流程如下。
1) 通过在线学习,训练数据样本(xi+1, ti+1)。
2) 计算在线学习数据样本的隐含层输出矩阵Hk+1。
3) 计算OSELM网络的输出权重矩阵βk+1。
与多数在线生长型人工神经网络模型相比,OSELM网络具有参数少、训练速度快和在线学习泛化性能强等优势。
2.4 OSELM网络算法及框架设计
设计OSELM网络算法包含5个有限元模型,定义为
$$ \text{OSELM}=\langle g(\cdot ),{\boldsymbol{H}},{\boldsymbol{P}},{\boldsymbol{T}},{\boldsymbol{\beta}} \rangle $$ (18) 式(18)中,隐含层激活函数g(·)由系统模型和外界环境决定;中间参数P:Pk×Hk+1→Pk+1,其第k+1次迭代的计算结果Pk+1总是由第k次的中间参数Pk和OSELM网络第k+1次隐含层输出矩阵Hk+1共同决定;网络输出权重矩阵β:βk×Pk+1×Hk+1×Tk+1→βk+1,其第k+1次迭代的计算结果βk+1总是由OSELM网络第k次的输出权重矩阵βk、第k+1次中间参数Pk+1和第k+1次网络输出矩阵Hk+1三者共同决定。
OSELM网络框架如图2所示。将采集的刮板输送机断链离线样本和AI摄像仪实时在线感知图像输入OSELM网络,输出为AI摄像仪的决策信息。
3. 试验与结果分析
3.1 OSELM网络离线样本训练
采用离线样本对构建的OSELM网络进行训练,进而构建刮板输送机断链识别模型。试验硬件配置为13th Gen Intel(R) Core(TM) i9−13900K CPU @ 3.00 GHz处理器、12 GiB的NVIDIA RTX A2000GPU、Windows10操作系统,编程语言采用Python 3.10.1,开发环境为PyCharm。
样本数据集来自兖矿能源集团股份有限公司金鸡滩煤矿、中国华能集团有限公司高头窑煤矿、淮南矿业(集团)有限责任公司丁集煤矿等大型综采(放)工作面,由隔爆兼本安型高清摄像仪采集。为提升刮板输送机断链识别效果,使用LabelImg对样本数据集进行标注,得到6 952张有效图像,按照7∶1∶2的比例划分为训练集、测试集和验证集,用于网络训练和性能评估。部分样本如图3所示。
OSELM网络经离线样本训练和测试,其对刮板输送机断链状态识别的平均精度均值(Mean Average Precision,mAP)、准确率和精确率均达到90%以上,平均检测速度为183.5帧/s。
3.2 工业性试验
3.2.1 试验环境及方法
基于OSELM的刮板输送机断链智能监测模型如图4所示。
依托兖矿能源集团股份有限公司石拉乌素煤矿工作面配置的海康威视KBA18(D)型AI摄像仪进行井下工业性试验。AI摄像仪安装于刮板输送机机尾架,如图5所示。考虑煤矿井下环境复杂、恶劣,AI摄像仪时常会附着大量煤尘,影响摄像仪视觉清晰度,对AI摄像仪设置定时雨刷功能,可根据工作面不同的采煤工艺及工况自定义雨刷工作时间间隔,在特殊情况下可手动操作雨刷工作。同时,为避免补光灯光照强度对拍摄质量和监测准确度的影响,为AI摄像仪配置自动变焦、曝光度自动调节和强光抑制功能。
将经过离线样本训练的OSELM网络与AI摄像仪融合,进行序列化在线学习训练。在线学习过程中,AI摄像仪先从外界环境中随机获取刮板输送机链条当前状态集合,之后产生相应的判断。随着AI摄像仪采集的在线样本不断增多,OSELM网络可以获取到最佳的“状态−决策”集合,从而进一步完成自主认知发育学习。
AI摄像仪实时采集的刮板输送机链条图像通过井下工业性千兆光纤环网上传至刮板输送机集中控制系统平台。在该平台主界面(图6)可显示刮板输送机断链监测的故障和通信信息,且具有断链监测的可视化界面,对断链识别结果进行全方位显示,如图7所示,蓝色框为采样识别区域,绿色和橙色锚框分别为左右两侧链环的识别状态和mAP。
3.2.2 试验结果
采用文献[18-21]中的网络模型(分别为深度神经网络融合网络、RT−DETR、YOLOv5、YOLOv8)、ELM和OSELM网络进行可视化识别分析,结果如图8所示。可看出OSELM网络对刮板输送机断链和正常链环的识别准确度均高于对比模型。
从mAP50、准确率、精确率、检测速度4个指标方面,将OSELM网络与文献[18-22]所提网络模型、ELM和OSELM网络进行对比分析,结果见表1。
表 1 不同断链监测网络模型性能对比Table 1. Performance comparison of different network models for broken chain monitoring从表1可看出:OSELM网络的mAP50、准确率和精确率均处于较高水平,分别达98.6%,99.3%,91.7%,较ELM网络分别提高了4.5%,2.5%,3.5%;与文献[18-21]中网络模型和ELM相比,OSELM网络整体监测性能更高,主要原因是OSELM网络不仅能够通过断链离线样本信息进行训练,还能在线实时学习当前复杂场景的链条状态样本信息,而其他模型仅能依靠离线样本进行网络训练,存在较高的样本局限性;文献[22]中网络模型的断链识别精确率较OSELM网络高1.7%,但准确率较OSELM网络低23.5%,存在较大的目标识别误差;OSELM网络的检测速度达205.6帧/s,仅略低于深度神经网络融合网络,验证了OSELM网络在刮板输送机断链监测方面的高效性。
理论方面,文献[18-22]中网络模型和ELM网络的训练和参数调优过程复杂,训练时间长,在实时训练方面性能较差。OSELM网络对增加的样本能够进行实时学习训练,通过上一个状态的网络输出权重,结合新增加的离线样本和在线样本,对网络输出权重进行更新迭代,不断优化网络输出权重,从而达到优化目标识别网络的目的。该网络的迭代参数种类较少,且可随新样本数据的到来不断更新而无需重新训练网络,使得网络模型始终保持在最新状态。
工业性试验结果验证了基于OSELM网络的刮板输送机断链智能监测系统能准确识别刮板输送机链条断裂故障,未发生漏报和误报情况,表明OSELM网络在煤矿井下复杂环境中具有较高的自主学习能力及较强的泛化性和鲁棒性。
4. 结论
1) OSELM网络在ELM网络基础上增加了在线训练模块,不仅能学习离线样本信息,还能在煤矿井下复杂场景中进行样本的实时在线训练,提高了刮板输送机断链识别模型的可靠性和泛化性。
2) 工业性试验结果表明,OSELM网络的mAP50、准确率和精确率分别达98.6%,99.3%,91.7%,高于深度神经网络融合网络、RT−DETR、YOLOv5、YOLOv8、ELM等对比模型;检测速度达205.6帧/s,可满足实时性检测要求。
3) 未来将重点优化OSELM网络针对刮板输送机断链的检测速度,并研究该网络在刮板输送机上煤矸识别和转载机危险区域人员误入检测方面的应用。
-
表 1 坐标点实际值与2种方法处理结果
Table 1 Actual values of coordinate points and processing results using two methods
m 观测点编号 真实坐标 测量坐标 AMCL 本文方法 1 (0.0, 0.0) (−0.04, −0.03) (−0.015, −0.003) 2 (−0.3, − 0.7) (−0.326, −0.796) (−0.316, −0.726) 3 (15, −0.4) (15.105, −0.427) (15.034, −0.423) 4 (10.3, −2) (10.435, −1.877) (10.289, −1.893) 5 (5, −0.85) (5.105, −0.691) (5.043, −0.821) 表 2 姿态角实际值与2种方法处理结果
Table 2 Actual value of attitude angle and processing results using two methods
rad 观测点编号 真实姿态角 测量姿态角 AMCL 本文方法 1 1.45 1.428 1.463 2 −3.14 −3.054 −3.123 3 0.15 0.052 0.093 4 1.57 1.421 1.485 5 3.14 2.975 3.085 表 3 位置误差和姿态角误差对比分析
Table 3 Comparative analysis of pose error and attitude angle error
编号 位置误差/m 姿态角误差/rad AMCL 本文方法 AMCL 本文方法 1 0.05 0.02 0.022 0.013 2 0.10 0.03 0.086 0.017 3 0.11 0.04 0.098 0.057 4 0.18 0.10 0.149 0.085 5 0.19 0.05 0.165 0.055 -
[1] 贾建称,贾茜,桑向阳,等. 我国煤矿地质保障系统建设30年:回顾与展望[J]. 煤田地质与勘探,2023,51(1):86-106. JIA Jiancheng,JIA Qian,SANG Xiangyang,et al. Review and prospect of coal mine geological guarantee system in China during 30 years of construction[J]. Coal Geology & Exploration,2023,51(1):86-106.
[2] 曾一凡,武强,赵苏启,等. 我国煤矿水害事故特征、致因与防治对策[J]. 煤炭科学技术,2023,51(7):1-14. ZENG Yifan,WU Qiang,ZHAO Suqi,et al. Characteristics,causes,and prevention measures of coal mine water hazard accidents in China[J]. Coal Science and Technology,2023,51(7):1-14.
[3] 石军杰,高贵军,游青山,等. 煤矿井下水仓清理机器人系统设计与应用[J]. 煤炭工程,2022,54(11):205-208. SHI Junjie,GAO Guijun,YOU Qingshan,et al. Water bin cleaning robot system for underground coal mine[J]. Coal Engineering,2022,54(11):205-208.
[4] 郭培红,薛蛟生,朱建安,等. 全液压水仓煤泥清挖泵送一体机研制[J]. 煤矿机械,2015,36(1):148-150. GUO Peihong,XUE Jiaosheng,ZHU Jian'an,et al. Development of cleaning-pumping combined machine with full hydraulic control for coal slime in water sump[J]. Coal Mine Machinery,2015,36(1):148-150.
[5] 宋峰,蒲仁利,钟灵敏,等. 一种矿用水仓清淤系统:CN202210801796.5[P]. 2022-09-02. SONG Feng,PU Renli,ZHONG Lingmin,et al. A mine water bin dredging system:CN202210801796.5[P]. 2022-09-02.
[6] 姚贵英,曹梦媛,马婧. 煤矿水仓清理机器人研究与设计[J]. 煤矿机械,2020,41(2):4-6. YAO Guiying,CAO Mengyuan,MA Jing. Research and design of coal mine sump cleaning robot[J]. Coal Mine Machinery,2020,41(2):4-6.
[7] 姚立健,丁为民,张培培,等. 基于改进型广义Hough变换的茄子果实位姿识别方法[J]. 农业工程学报,2009,25(12):128-132. DOI: 10.3969/j.issn.1002-6819.2009.12.023 YAO Lijian,DING Weimin,ZHANG Peipei,et al. Recognition method of position and attitude of eggplant fruits based on improved generalized Hough transforms[J]. Transactions of the Chinese Society of Agricultural Engineering,2009,25(12):128-132. DOI: 10.3969/j.issn.1002-6819.2009.12.023
[8] 陈东旭,赵铁军,乔赫廷. 基于线结构光的焊缝位姿识别研究[J]. 机械工程与自动化,2021(4):38-40,43. CHEN Dongxu,ZHAO Tiejun,QIAO Heting. Research on weld position-posture recognition based on line structured light[J]. Mechanical Engineering & Automation,2021(4):38-40,43.
[9] 马斌,彭光宇. 基于单目视觉的钻杆位姿识别技术研究[J]. 煤田地质与勘探,2022,50(10):171-178. DOI: 10.12363/issn.1001-1986.22.01.0036 MA Bin,PENG Guangyu. Research on drill pipe pose recognition technology based on monocular vision[J]. Coal Geology & Exploration,2022,50(10):171-178. DOI: 10.12363/issn.1001-1986.22.01.0036
[10] KEDONG W. A new algorithm for fine acquisition of GPS carrier frequency[J]. GPS Solutions,2014,18(4):581-592. DOI: 10.1007/s10291-013-0356-2
[11] 黄西平,杨飞. 综采工作面巡检机器人自主定位方法[J]. 工矿自动化,2023,49(4):86-91. HUANG Xiping,YANG Fei. Autonomous positioning method for inspection robots in fully mechanized working face[J]. Journal of Mine Automation,2023,49(4):86-91.
[12] 陆一,魏东岩,纪新春,等. 地磁定位方法综述[J]. 导航定位与授时,2022,9(2):118-130. LU Yi,WEI Dongyan,JI Xinchun,et al. Review of geomagnetic positioning method[J]. Navigation Positioning and Timing,2022,9(2):118-130.
[13] 崔苗,喻鑫,李学易,等. 多载波无线携能通信的上下行链路联合资源分配[J]. 通信学报,2019,40(3):206-214. DOI: 10.11959/j.issn.1000-436x.2019052 CUI Miao,YU Xin,LI Xueyi,et al. Joint downlink and uplink resource allocation for multi-carrier SWIPT system[J]. Journal on Communications,2019,40(3):206-214. DOI: 10.11959/j.issn.1000-436x.2019052
[14] SMITH R,SELF M,CHEESEMAN P. Estimating uncertain spatial relationships in robotics[J]. Machine Intelligence & Pattern Recognition,1988,5(5):435-461.
[15] FOX D,BURGARD W,DELLAERT F,et al. Monte carlo localization:efficient position estimation for mobile robots[C]. Sixteenth National Conference on Artificial Intelligence,Orland,1999.
[16] 王宁,王坚,李丽华. 一种改进的AMCL机器人定位方法[J]. 导航定位学报,2019,7(3):31-37. WANG Ning,WANG Jian,LI Lihua. An improved adaptive monte carlo localization method for robot[J]. Journal of Navigation and Positioning,2019,7(3):31-37.
[17] 冯佳萌,裴东,邹勇,等. 基于机器人激光定位的一种改进AMCL算法[J]. 激光与光电子学进展,2021,58(20):479-487. FENG Jiameng,PEI Dong,ZOU Yong,et al. An improved AMCL algorithm based on robot laser localization[J]. Laser & Optoelectronics Progress,2021,58(20):479-487.
[18] 马先重. 基于多传感器融合的室内移动机器人定位及障碍物检测与测量研究[D]. 武汉:武汉科技大学,2021. MA Xianchong. Research on localization and obstacle detection and measurement of indoor mobile robot based on multi sensor fusion[D]. Wuhan:Wuhan University of Science and Technology,2021.
[19] 金书奎,寇子明,吴娟. 煤矿水泵房巡检机器人路径规划与跟踪算法的研究[J]. 煤炭科学技术,2022,50(5):253-262. JIN Shukui,KOU Ziming,WU Juan. Research on path planning and tracking algorithm of inspection robot in coal mine water[J]. Coal Science and Technology,2022,50(5):253-262.
[20] 宗意凯,苏淑靖,高瑜宏. 基于多源IMU和粒子滤波优化的姿态融合算法[J]. 仪表技术与传感器,2023(8):88-95. DOI: 10.3969/j.issn.1002-1841.2023.08.015 ZONG Yikai,SU Shujing,GAO Yuhong. Attitude fusion algorithm based on multi-source IMU and particle filter optimization[J]. Instrument Technique and Sensor,2023(8):88-95. DOI: 10.3969/j.issn.1002-1841.2023.08.015
[21] 沈斯杰,田昕,魏国亮,等. 基于2D激光雷达的SLAM算法研究综述[J]. 计算机技术与发展,2022,32(1):13-18,46. DOI: 10.3969/j.issn.1673-629X.2022.01.003 SHEN Sijie,TIAN Xin,WEI Guoliang,et al. Review of SLAM algorithm based on 2D lidar[J]. Computer Technology and Development,2022,32(1):13-18,46. DOI: 10.3969/j.issn.1673-629X.2022.01.003
[22] PENG Gang,ZHENG Wei,LU Zezao,et al. An improved AMCL algorithm based on laser scanning match in a complex and unstructured environment[J]. Complexity,2018(5):1-11.
[23] ARASARATNAM I,HAYKIN S,ELLIOTT R J. Discrete-time nonlinear filtering algorithms using gauss-hermite quadrature[J]. Proceedings of the IEEE,2007,95(5):953-977.
[24] SU Zhifeng,ZHOU Jiehua,DAI Jiyang,et al. Optimization design and experimental study of gmapping algorithm[C]. Chinese Control and Decision Conference,Hefei,2020. DOI: 10.1109/CCDC49329.2020.9164603.