Research progress on digital twin technology for intelligent mines
-
摘要: 智能矿山领域数字孪生技术的应用需面对较多复杂性、特殊性的技术突破。阐述了数字孪生在智能矿山领域的适用性,归纳梳理了数字孪生技术在煤矿安全、生产及运营管理等方面的研究及应用现状:在煤矿安全管理方面,数字孪生技术主要应用于灾害预警、风险管控、灾害救援等;在煤矿生产方面,数字孪生技术主要应用于采掘工作面区域整体、单机机械装备状态监测及控制、机械装备预测性维护。从物理实体、虚拟实体、连接交互、数字孪生数据及功能服务5个维度入手探讨了智能矿山领域数字孪生亟待解决的关键共性问题:物理实体维度需重点突破全面感知及控制装备的研发,虚拟实体维度需深入进行物理、行为、规则模型的研究,连接交互维度需攻关煤矿井下5G网络传输关键技术,数字孪生数据维度需解决高性能计算等问题,功能服务维度需研发仿真软件及人工智能算法,以便更好地适应现场环境。从矿井规划设计、开发、建设阶段的灾害预防性设计、生产系统设计、地质环境预测,矿井生产运营阶段的灾害预警及防控、生产调度决策优化、生产设备全生命周期管理等方面展望了数字孪生技术在智能矿山领域的发展趋势,认为宜针对关键部件或装备,核心环节,重要或危险场所、区域等进行精细化孪生。Abstract: The application of digital twin technology in the field of intelligent mining needs to face many complex and special technological breakthroughs. This article elaborates on the applicability of digital twins in the field of intelligent mining, and summarizes the research and application status of digital twin technology in coal mine safety, production, and operation management. In terms of coal mine safety management, digital twin technology is mainly applied in disaster warning, risk control, disaster rescue, etc. In terms of coal mine production, digital twin technology is mainly applied in the overall mining working face area, monitoring and control of single machine mechanical equipment status, and predictive maintenance of mechanical equipment. Starting from five dimensions: physical entity, virtual entity, connection interaction, digital twin data, and functional services, this paper explores the key common problems that urgently need to be solved in the field of intelligent mining. The physical entity dimension needs to focus on breaking through the research and development of comprehensive perception and control equipment. The virtual entity dimension needs to conduct in-depth research on physical, behavioral, and rule models. The connection interaction dimension needs to tackle key technologies for underground 5G network transmission in coal mines. The twin data dimension needs to solve problems such as high-performance computing. The functional service dimension needs to develop simulation software and artificial intelligence algorithms to better adapt to the on-site environment. This article looks forward to the development trend of digital twin technology in the field of intelligent mining from the aspects of disaster prevention design, production system design, geological environment prediction in the planning, development, and construction stages of mines, disaster warning and prevention, optimization of production scheduling decisions, and full life cycle management of production equipment in the production and operation stage of mines. It is believed that fine twinning should be carried out for key components or equipment, core links, important or dangerous places, areas, etc.
-
0. 引言
镜质组反射率与挥发分产率、粘结系数等指标有较强相关性,是公认表征煤化程度(煤级)的重要指标。其中,油浸物镜下测得的镜质组平均最大反射率(Mean Maximum Vitrinite Reflectance, MMVR)应用最为广泛,是进行炼焦配煤、混煤鉴别的主要依据[1-2]。目前MMVR测定主要有2种方式:① 基于显微光度计的人工测定。该方式准确度高,但耗时长,测定过程受人员的专业知识影响较大,测试结果主观性较强。② 基于计算机视觉技术的自动测定。该方式凭借其快速、准确和可重复性等优势,有望成为MMVR测定的主要方向[3]。
MMVR自动测定主要包括煤岩显微组分识别(镜质组的识别)和MMVR估计2个部分[4]。近年来基于计算机视觉技术的煤岩显微组分识别引起了研究者的极大关注[5]。M. Mlynarczuk等[6]采用形态学梯度、灰度特征和最近邻算法实现了三大显微组分和矿物的识别,平均准确率为97.23%。Wang Hongdong等[7]提出了一种基于图像分析的显微组分识别方法,开发了基于图像分割和分类的显微组分识别策略,可识别7种显微组分或亚组分,准确率为90.44%。 Lei Meng等[8]设计了具有增强注意力门的改进U−Net模型并评估了各种编码器的性能,在89张显微图像上的实验结果显示该方法的分割准确率达到91.56%。王培珍等[9]根据各显微组分的纹理特点和亮度差异,提出了迁移学习的镜质组分类方法,实现了对结构镜质体、无结构镜质体和镜屑体3种显微组分的识别。
虽然前人对显微组分的智能识别做了大量尝试,但对MMVR估计的研究相对有限。B. M. England等[10]利用图像分析仪测量MMVR的分布,获得了较好的效果。王洪栋[11]提出一种基于机器学习的MMVR估计方法,并发布首款免费公开的镜质组反射率分析软件,其研究结果证明机器学习方法在估计MMVR上具有较大的潜力。
上述研究成果极大推动了基于计算机视觉技术的MMVR测定研究,但仍然存在一些问题和改进的空间。目前的研究仍多为半自动化方式,即图像中镜质组区域的识别仍然依赖于人工判定。虽然Wang Hongdong等[12]实现了全自动MMVR测定,但由于未考虑镜质组和非镜质组样本的不均衡问题,镜质组识别率有待进一步提升。此外,MMVR回归多采用单一灰度特征,回归分析性能仍有一定提升空间。鉴此,本文提出了一种基于机器学习的MMVR估计方法。首先,使用K−Means算法将煤岩显微图像中的不同显微组分聚类,利用聚类后的标签将煤岩显微图像分割成不同显微组分。其次,采用随机森林(Random Forest,RF)对分割后的显微组分分类,得到镜质组区域的显微图像。然后,采用人工少数类过采样法(Synthetic Minority Over-Sampling Technique, SMOTE)对少数类样本进行过采样,以解决分类时镜质组区域与非镜质组区域样本不均衡的问题。最后,使用基于树突网络(Dendrite Net,DDNet)的回归算法估计MMVR。本文的主要创新点如下:① 通过引入SMOTE算法,解决了镜质组和非镜质组区域样本不均衡问题,提高了镜质组识别的准确率,为MMVR回归分析打下良好基础。② 采用DDNet进行MMVR回归分析,提升了MMVR估计的精度和鲁棒性。③ 将显微图像分割、镜质组识别和MMVR估计算法进行集成,开发了MMVR估计软件。
1. 研究方法
基于随机森林和树突网络的煤镜质组反射率估计方法主要由基于K−Means的煤岩显微图像分割、基于SMOTE和RF的镜质组区域识别和基于DDNet的MMVR估计3个部分组成。MMVR估计流程如图1所示。
采用K−Means算法将显微图像中不同显微组分聚类,将显微图像分割成K个不同的区域,每个区域均对应一种显微组分。由于每张显微图像中显微组分的类别数不同,本文采用手肘法确定K值[13-14],分别采用不同的K值进行聚类,并计算其误差平方和(每个样本点与其聚类中心距离的平方和),误差平方和与K的关系图是一个手肘形,取肘部位置对应的K值作为最优类别数。从分割后的显微图像中提取包括纹理、灰度和几何特征在内的综合特征进行镜质组区域识别。考虑到较大的镜质组区域能更真实地反映煤岩的镜质组反射率,本文仅对面积大于100×100像素的区域进行识别。在MMVR估计阶段,从识别出的镜质组区域随机截取41×41像素大小的方形镜质组窗口,从中提取灰度特征,并建立基于DDNet的MMVR回归模型。
1.1 SMOTE算法
考虑到显微图像中非镜质组区域较多,为避免类别不平衡对模型性能的影响,本文使用SMOTE算法,通过合成新样本的方式对少数类样本进行过采样[15]。与随机过采样不同,SMOTE算法是在特征空间进行采样,并非数据空间。该算法通过生成人工样本拓宽决策区域,添加到数据集中的新样本位于原始样本的附近,而不是样本本身,从而降低了过拟合的概率[16]。
1.2 DDNet算法
Liu Gang等[17-18]提出了一种只包含矩阵乘法和Hadamard乘积的机器学习算法DDNet。与传统的全连接神经网络(Full-connect Neural Network,FNN)相比,DDNet使用Hadamard乘积代替非线性激活函数。单层DDNet与FNN的输入输出关系分别为
$$ Y_1={\boldsymbol{W}}^{l, l-1} X \circ X $$ (1) $$ Y_2=f\left({\boldsymbol{W}}^{l, l-1} X\right) $$ (2) 式中:Y1为单层DDNet的输出;W l,l−1为第l−1个模块到第l个模块的权值矩阵;X为输入数据;“$\circ $”为Hadamard乘积符号,表示2个矩阵对应元素相乘;Y2为FNN的输出;f(·)为非线性激活函数。
DDNet的体系结构可表示为
$$ \begin{gathered} Y={\boldsymbol{W}}^{L, L-1}\left[\cdots {\boldsymbol{W}}^{l, l-1}\left(\cdots {\boldsymbol{W}}^{2,1}\left({\boldsymbol{W}}^{1,0} X \circ X\right) \circ X \cdots\right) \circ X \cdots\right] \end{gathered} $$ (3) 式中L为DDNet模块的数量。
DDNet使用Hadamard乘积代替非线性激活函数,将展开式等价为特征之间的逻辑表达,实现了高次幂代替非线性映射的功能,各项前的权重矩阵则转换为泰勒展开式的系数。DDNet收敛后在类似于最优组合点处的泰勒展开,使得其非线性学习所受的限制更小。与传统的FNN相比,DDNet具有较快的有效收敛速度,且不易出现过拟合,泛化能力更好。本文使用DDNet构建神经网络,结构如图2所示。
1.3 特征提取
煤岩显微组分光学特征复杂,依靠单一类型的特征难以区分镜质组与其他显微组分[19-20]。本文提取包括灰度、几何、纹理特征在内的101维特征用于镜质组识别。其中,灰度特征包括灰度均值、灰度最大值、灰度中值、灰度标准差、对比度、能量、灰度概率(不同灰度的像素在总像素中的占比)[21],共70维。为提高计算灰度概率的效率,实验对相邻的4个灰度级合并计算。同时选取7个Hu不变矩描述显微组分的几何特征[22]。采用灰度共生矩阵描述显微组分的纹理特征,包含4个方向上的逆差矩、二阶矩、熵、对比度、差异性、相关性共24个特征[23-24]。
MMVR与灰度分布之间存在密切关系,为了准确描述灰度分布并预测MMVR,从截取的镜质组方形窗口中提取14维灰度特征进行MMVR回归分析,包括灰度均值、灰度最大值、灰度中值、灰度标准差及对应像素点数量最多的10个灰度值。
1.4 评价指标
1.4.1 镜质组识别的性能评价指标
通过准确率A、查准率P、召回率R和F1分数4个性能指标评价镜质组识别算法的性能。
$$ \begin{array}{c}\begin{array}{c}A=\dfrac{{T}_{\mathrm{P}}+{T}_{\mathrm{N}}}{{T}_{\mathrm{P}}+{T}_{\mathrm{N}}+{F}_{\mathrm{P}}+{F}_{\mathrm{N}}}\end{array} \end{array} $$ (4) $$ \begin{array}{c}\begin{array}{c}P=\dfrac{{T}_{\mathrm{P}}}{{T}_{\mathrm{P}}+{F}_{\mathrm{P}}}\end{array} \end{array} $$ (5) $$ \begin{array}{c}\begin{array}{c}R=\dfrac{{T}_{\mathrm{P}}}{{T}_{\mathrm{P}}+{F}_{\mathrm{N}}}\end{array} \end{array} $$ (6) $$ \begin{array}{c}\begin{array}{c}{F}_{1}=\dfrac{2PR}{P+R}\end{array} \end{array} $$ (7) 式中:TP为被预测为正类的正样本数;TN为被预测为负类的负样本数;FP为被预测为正类的负样本数;FN为被预测为负类的正样本数。
1.4.2 MMVR估计的性能评价指标
采用均方误差Mse、平均绝对误差Mae和决定系数S三个指标评价MMVR估计算法的性能。均方误差衡量MMVR预测值与真实值之间的差异程度。平均绝对误差为预测值与真实值的绝对差值的平均值。决定系数表明回归预测与真实值的接近程度,其取值范围为0~1。决定系数值越大,表示回归的性能越好。各指标计算公式为
$$ {M}_{\mathrm{s}\mathrm{e}}=\frac{1}{n}\sum _{i=1}^{n}{\left(\mathop {{\hat y}}\nolimits_{i}-{y}_{i}\right)}^{2} $$ (8) $$ {M}_{\mathrm{a}\mathrm{e}}=\frac{1}{n}\sum _{i=1}^{n}\left|\mathop {{\hat y}}\nolimits_{i}-{y}_{i}\right| $$ (9) $$ S=1-\frac{\displaystyle \sum _{i=1}^{n}{\left(\mathop {{\hat y}}\nolimits_{i}-y_{i}\right)}^{2}}{\displaystyle \sum _{i=1}^{n}{\left({\bar y}-{y}_{i}\right)}^{2}} $$ (10) 式中:n为样本个数;$\mathop {{\hat y}}\nolimits_{i}$为预测值;$ {y}_{i} $为真值;$ \stackrel{-}{y} $为总体真实值的平均值。
2. 实验结果和分析
本文使用来源于美国科罗拉多和西弗吉尼亚的13个煤样进行实验。样本包含69张煤岩显微图像,其MMVR为0.7%~1.79%。10~15个相互独立的实验室严格遵守反射率测定标准ASTM D2798-21(Standard Test Method for Microscopical Determination of the Vitrinite Reflectance of Coal),使用显微光度计测得13个煤样的MMVR,最终的MMVR数值为各实验室测得数据的平均值。13个煤样的煤岩显微图像均采用Leica DFC480数字照相机在白光照射和油浸物镜下拍摄,且均处于相同曝光条件下。可通过以下网址获取相关实验数据:https://energy.usgs.gov/PhotoAtlas/?aid=14。
2.1 图像分割结果
基于手肘法和K−Means算法的煤岩显微图像分割结果如图3所示。图3(a)−图3 (d)中显微图像所含有的显微组分类别数依次是1−4。分割结果显示,采用手肘法自动确定K−Means算法的参数K,具有良好的自适应能力,能够自动区分不同类别数的显微组分。
2.2 镜质组识别结果
使用K−Means算法分割13个煤样的69张显微图像后,去除小于100×100像素的区域,最终获得显微组分区域共891个,其中镜质组区域168个,非镜质组区域723个,类别分布不平衡。对每个区域提取几何、纹理和灰度共101维复合特征,形成891×101像素的矩阵,作为基础数据集。将数据集按照8∶2的比例随机划分为训练集和测试集进行实验。为了解决镜质组与非镜质组样本不均衡的问题,尝试了3种不同的过采样、下采样算法:① SMOTE算法,通过添加合成的少数类样本改善数据分布的不平衡。② 随机下采样(Random Under Sample,RUS),通过随机选择对多数类样本进行下采样。③ SMOTE算法与RUS相结合的不均衡数据处理方法。在镜质组识别实验中,对比了4种经典分类算法(分类回归树(CART)、K近邻(KNN)、支持向量机(SVM)、RF)与不同数据处理方法结合得到的分类性能,实验结果见表1。同时,为研究采样后的少数类与多数类样本比例对各模型分类性能的影响,以使用SMOTE算法处理不平衡数据为例,分别将镜质组与非镜质组样本比例设置为0.3∶1,0.5∶1,0.7∶1,0.9∶1和1∶1。用SMOTE算法处理后,样本不平衡问题得到了缓解。随着镜质组与非镜质组样本比例的增大,分类模型整体性能逐渐变好,当该比例达到0.7时,模型性能趋于稳定。为简便起见,在后续实验中,将上述比例设置为1∶1。
表 1 过采样、下采样处理前后结果对比Table 1. Comparison of experimental results before and after oversampling and down-sampling数据处理 分类算法 准确率 查准率 召回率 F1分数 处理前 CART 0.95±0.02 0.88±0.06 0.87±0.07 0.87±0.05 KNN 0.95±0.01 0.90±0.05 0.86±0.05 0.88±0.04 SVM 0.95±0.01 0.88±0.06 0.88±0.06 0.88±0.04 RF 0.96±0.01 0.92±0.05 0.85±0.07 0.88±0.04 RUS CART 0.93±0.02 0.77±0.08 0.92±0.05 0.83±0.05 KNN 0.95±0.02 0.82±0.06 0.93±0.04 0.87±0.04 SVM 0.95±0.02 0.81±0.08 0.95±0.04 0.87±0.05 RF 0.95±0.02 0.82±0.06 0.96±0.04 0.89±0.04 SMOTE结合RUS CART 0.94±0.02 0.83±0.06 0.87±0.06 0.85±0.04 KNN 0.96±0.01 0.86±0.06 0.92±0.05 0.89±0.03 SVM 0.96±0.01 0.88±0.05 0.90±0.04 0.89±0.03 RF 0.97±0.01 0.91±0.05 0.93±0.04 0.92±0.03 SMOTE CART 0.95±0.01 0.85±0.05 0.88±0.05 0.87±0.04 KNN 0.96±0.01 0.87±0.05 0.91±0.05 0.89±0.03 SVM 0.96±0.01 0.88±0.05 0.90±0.05 0.89±0.03 RF 0.97±0.01 0.92±0.04 0.93±0.04 0.92±0.03 为了避免偶然因素影响,表1中的各项数据均为4种分类算法重复实验50次所得的平均值。由表1可知,RF算法在实验中表现最佳。此外,使用SMOTE算法对训练集少数类样本过采样后,4种分类算法在准确率和F1分数略有提升的同时,召回率大幅增加,且各项指标的标准差有所降低。使用RUS算法处理后,镜质组与非镜质组样本的比例被提升为1∶1,数据不平衡问题得到了解决。相较于不做下采样处理,模型的平均召回率从0.85提升到0.96,平均F1分数从0.88提升为0.89,但查准率明显下降,预测结果中可能包含较多的假阳性样本。实验结果表明,仅使用SMOTE算法即可有效避免模型因过度学习样本先验信息而导致对多数类识别好、少数类识别差的问题。
2.3 基于煤样的MMVR回归结果
受传统MMVR测定方法的启发,采用基于煤样的MMVR回归分析,单个煤样的MMVR估计值为其包含的所有煤岩显微图像的MMVR估计值的均值。在估计单幅煤岩显微图像的MMVR时,选取煤岩显微图像中大于100×100像素的镜质组区域进行MMVR估计。模仿传统取点测量的方法,从镜质组区域中截取多个方形窗口(41×41像素),所有方形窗口MMVR估计结果的平均值为该煤岩显微图像的MMVR。
煤岩显微图像的MMVR估计结果如图4所示,其中图4(b)为多个方形窗口的反射率预测结果分布。该煤岩显微图像的MMVR实际值为1.31%,多个方形窗口预测结果的平均值为1.285%,证明了对单幅显微图像截取窗口进行回归分析的有效性。
在煤样MMVR回归实验中,对比了7种回归分析算法,包括支持向量机回归(Support Vector Regression,SVR)、自适应增强(AdaBoost)、K 近邻(K-Nearest Neighbor,KNN)、梯度提升(Gradient Boosting)、RF、FNN和DDNet。实验采用留一法进行交叉验证,为了防止偶然因素影响,共进行了20次回归实验,最终得到的均方误差、平均绝对误差、决定系数结果对比见表2。
表 2 回归算法测试结果对比Table 2. Comparison of test results of regression algorithms算法 均方误差 平均绝
对误差决定系数 SVR 0.014 0.080 0.885 AdaBoost 0.010 0.078 0.919 KNN 0.010 0.071 0.925 Gradient Boosting 0.009 0.071 0.926 RF 0.009 0.070 0.926 FNN 0.033 0.064 0.735 DDNet 0.001 0.027 0.990 由表2可知,DDNet回归分析算法取得了最佳性能。DDNet作为FNN的改进算法,在将非线性激活函数替换为Hadamard乘积后,其回归分析的精度和泛化性能均有显著提升。
DDNet回归模型的预测结果如图5所示,直观地展示了13个煤样MMVR的实际值和预测值之间的相关性。图5中MMVR的预测值与实际值高度契合,证明了将DDNet回归算法用于MMVR预测估计具有较强的可行性。
2.4 软件界面
为协助煤岩分析工作者进行MMVR测定,开发了一款煤岩MMVR估计软件。该软件集成了基于K−Means的图像分割算法、基于RF的镜质组识别算法和基于DDNet的MMVR估计算法。需要说明的是,该软件的适用对象需符合反射率测定标准ASTM D2798-21(Standard Test Method for Microscopical Determination of the Vitrinite Reflectance of Coal)。针对图像分割中超参数K的设定,软件提供手肘法自动确定和人工设定2种方式。
煤岩MMVR估计软件界面如图6所示。通过“导入煤样图片”按钮批量导入指定煤样的多幅煤岩显微图像,A区域显示导入的显微图像;通过“镜质组识别”按钮对导入的显微图像进行图像分割和镜质组识别,并将识别出的镜质组区域显示于B区域中;通过“切换图像”按钮切换该煤样的不同显微图像及其镜质组识别结果;通过“反射率估计”按钮估计镜质组区域的MMVR值,并将该煤样所截取窗口的反射率分布柱状图和MMVR估计结果显示在C区域和D区域中。
3. 结论
1) 基于机器视觉技术开发了煤岩MMVR估计系统,主要包括煤岩显微图像分割、镜质组识别和MMVR回归3个部分。采用K−Means算法,分割显微图像中的不同显微组分,提取镜质组灰度、几何和纹理等特征;为改善样本不均衡问题,采用SMOTE算法对少数类样本过采样,构建了4种镜质组区域识别模型,其中RF方法性能最优,分类准确率为97.0%;建立了7种回归估计模型,其中DDNet回归算法取得了最优的结果,决定系数达到了0.990。
2) 实验结果表明,本文所提方法与传统基于显微光度计测定方法的测定结果高度契合,且克服了传统显微光度计测定方法对时间、精力、专业知识要求高的缺点,验证了机器学习在煤岩显微图像分析中应用的可行性。
3) 下一步拟对更多样本、更宽镜质组反射率范围的煤样进行分析,并尝试使用更复杂的神经网络完成图像分割、分类及回归任务,以减少对特征工程的依赖。
-
-
[1] 王国法,刘峰,孟祥军,等. 煤矿智能化(初级阶段)研究与实践[J]. 煤炭科学技术,2019,47(8):1-36. WANG Guofa,LIU Feng,MENG Xiangjun,et al. Research and practice on intelligent coal mine construction(primary stage)[J]. Coal Science and Technology,2019,47(8):1-36.
[2] 王国法,任怀伟,赵国瑞,等. 煤矿智能化十大“痛点”解析及对策[J]. 工矿自动化,2021,47(6):1-11. WANG Guofa,REN Huaiwei,ZHAO Guorui,et al. Analysis and countermeasures of ten 'pain points' of intelligent coal mine[J]. Industry and Mine Automation,2021,47(6):1-11.
[3] 王国法,任怀伟,赵国瑞,等. 智能化煤矿数据模型及复杂巨系统耦合技术体系[J]. 煤炭学报,2022,47(1):61-74. WANG Guofa,REN Huaiwei,ZHAO Guorui,et al. Digital model and giant system coupling technology system of smart coal mine[J]. Journal of China Coal Society,2022,47(1):61-74.
[4] 王国法,杜毅博,陈晓晶,等. 从煤矿机械化到自动化和智能化的发展与创新实践——纪念《工矿自动化》创刊50周年[J]. 工矿自动化,2023,49(6):1-18. WANG Guofa,DU Yibo,CHEN Xiaojing,et al. Development and innovative practice from coal mine mechanization to automation and intelligence:commemorating the 50th anniversary of the founding of Journal of Mine Automation[J]. Journal of Mine Automation,2023,49(6):1-18.
[5] 王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术,2022,50(1):1-27. WANG Guofa. New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology,2022,50(1):1-27.
[6] 高汶栋. 计算机集成制造系统[J]. 电世界,1995,36(9):6-7. GAO Wendong. Computer integrated manufacturing system[J]. Electrical World,1995,36(9):6-7.
[7] 邢震. 综放工作面采空区自燃危险区域监测技术及应用研究[J]. 煤炭工程,2017,49(11):130-132,137. XING Zhen. Research on monitoring technology for danger zone of spontaneous combustion in goaf of fully-mechanized top-coal caving face[J]. Coal Engineering,2017,49(11):130-132,137.
[8] 邢震. 高瓦斯矿井采空区瓦斯与煤自燃耦合规律研究[J]. 工矿自动化,2020,46(3):6-11,20. XING Zhen. Research on coupling law of gas and coal spontaneous combustion in goaf of high gas mine[J]. Industry and Mine Automation,2020,46(3):6-11,20.
[9] 周福宝,时国庆,王雁鸣,等. 矿井密闭全生命周期安全风险监测预警[J]. 工矿自动化,2023,49(6):48-56. ZHOU Fubao,SHI Guoqing,WANG Yanming,et al. Safety risks monitoring and warning throughout the full lifecycle of mine air stopping[J]. Journal of Mine Automation,2023,49(6):48-56.
[10] 张勇,宿国瑞,王鹏,等. 基于煤矿事故全过程的智慧应急云平台架构及关键技术研究[J]. 中国煤炭,2022,48(10):58-63. ZHANG Yong,SU Guorui,WANG Peng,et al. Research on the architecture and key technologies of intelligent emergency cloud platform based on the whole process of coal mine accident[J]. China Coal,2022,48(10):58-63.
[11] 田广宇,林泽东. 煤矿工作面超前预警模型与系统实现[J]. 软件导刊,2021,20(7):116-123. TIAN Guangyu,LIN Zedong. Advance warning model and system realization of coal mining face[J]. Software Guide,2021,20(7):116-123.
[12] 朱斌,张奎,张有为,等. 综掘面风流智能调控数字孪生系统[J]. 计算机集成制造系统,2023,29(6):2006-2018. ZHU Bin,ZHANG Kui,ZHANG Youwei,et al. Digital twin system for airflow intelligent control of fully-mechanized caving face[J]. Computer Integrated Manufacturing Systems,2023,29(6):2006-2018.
[13] 张有为. 综掘面风流调控数字孪生系统研究[D]. 西安:长安大学,2022. ZHANG Youwei. Study on digital twin system controlled by wind flow in fully mechanized excavation face[D]. Xi'an:Chang'an University,2022.
[14] 韩龙,王顺葵,陈广炎,等. 基于VR和数字孪生的煤矿井下巷道巡检机器人设计[J]. 科学技术创新,2023(19):217-220. HAN Long,WANG Shunkui,CHEN Guangyan,et al. VR and digital twin-based design of an underground coal mine tunnel inspection robot[J]. Scientific and Technological Innovation,2023(19):217-220.
[15] 李新,李飞,方世巍,等. 基于UE4的井下变电所巡检机器人数字孪生系统[J]. 煤矿安全,2021,52(11):130-133. LI Xin,LI Fei,FANG Shiwei,et al. Digital twin system of inspection robot in underground substation based on UE4[J]. Safety in Coal Mines,2021,52(11):130-133.
[16] 刘怡梦. 基于Kinect手势交互的综采工作面虚拟巡检系统设计与实现[D]. 太原:太原理工大学,2022. LIU Yimeng. Design and implementation of virtual inspection system for fully mechanized caving face based on Kinect gesture interaction[D]. Taiyuan:Taiyuan University of Technology,2022.
[17] WANG Hongwei,WANG Zeliang,JIANG Yaodong,et al. New approach for the digital reconstruction of complex mine faults and its application in mining[J]. International Journal of Coal Science & Technology,2022,9(1). DOI: 10.1007/s40789-022-00506-z.
[18] WANG Zhiquan. Prediction method of coal and gas outburst intensity based on digital twin and deep learning[J]. Frontiers in Energy Research,2022,10. DOI: 10.3389/FENRG.2022.891184.
[19] 王国法,庞义辉,李爽,等. 基于煤矿时空多源信息感知的智能安控闭环体系[J]. 矿业安全与环保,2022,49(4):1-11. WANG Guofa,PANG Yihui,LI Shuang,et al. Intelligent safety closed-loop management and control system based on multi-source information perception in coal mine[J]. Mining Safety & Environmental Protection,2022,49(4):1-11.
[20] 李爽,贺超,鹿乘,等. 煤矿智能双重预防机制与智能安全管控平台研究[J]. 煤炭科学技术,2023,51(1):464-473. LI Shuang,HE Chao,LU Cheng,et al. Research on intelligent dual prevention mechanism and intelligent security control platform of coal mine[J]. Coal Science and Technology,2023,51(1):464-473.
[21] 王佳奇,卢明银. 基于数字孪生的煤矿瓦斯事故安全管理[J]. 煤矿安全,2020,51(8):251-255. WANG Jiaqi,LU Mingyin. Mine gas accident safety management based on digital twin[J]. Safety in Coal Mines,2020,51(8):251-255.
[22] 李治理,邱向雷,刘海瑞,等. 煤矿防突信息管理数字孪生平台功能及应用[J]. 陕西煤炭,2023,42(4):177-181. LI Zhili,QIU Xianglei,LIU Hairui,et al. Function and application of information management digital twin platform for coal mine outburst prevention[J]. Shaanxi Coal,2023,42(4):177-181.
[23] 郭向阳,于亮亮,吴卫兵,等. 基于数字孪生的智慧煤矿安全管控平台研究[J]. 能源技术与管理,2022,47(4):134-136. GUO Xiangyang,YU Liangliang,WU Weibing,et al. Research on smart coal mine safety control platform based on digital twins[J]. Energy Technology and Management,2022,47(4):134-136.
[24] 郭泱泱. 元宇宙技术在煤矿安全培训和应急演练中的可行性研究[J]. 煤田地质与勘探,2022,50(1):144-148. GUO Yangyang. Feasibility study of the Metaverse technology in coal mine emergency training and drills[J]. Coal Geology & Exploration,2022,50(1):144-148.
[25] 葛世荣,王世博,管增伦,等. 数字孪生-应对智能化综采工作面技术挑战[J]. 工矿自动化,2022,48(7):1-12. GE Shirong,WANG Shibo,GUAN Zenglun,et al. Digital twin:meeting the technical challenges of intelligent fully mechanized working face[J]. Journal of Mine Automation,2022,48(7):1-12.
[26] 刘清,张龙,李天越,等. 综采工作面三机数字孪生及协同建模方法[J]. 工矿自动化,2023,49(2):47-55. LIU Qing,ZHANG Long,LI Tianyue,et al. A three machine digital twin and collaborative modeling method for fully mechanized working face[J]. Journal of Mine Automation,2023,49(2):47-55.
[27] 苗丙,葛世荣,郭一楠,等. 煤矿数字孪生智采工作面系统构建[J]. 矿业科学学报,2022,7(2):143-153. MIAO Bing,GE Shirong,GUO Yinan,et al. Construction of digital twin system for intelligent mining in coal mines[J]. Journal of Mining Science and Technology,2022,7(2):143-153.
[28] 葛世荣,张帆,王世博,等. 数字孪生智采工作面技术架构研究[J]. 煤炭学报,2020,45(6):1925-1936. GE Shirong,ZHNAG Fan,WANG Shibo,et al. Digital twin for smart coal mining workface:technological frame and construction[J]. Journal of China Coal Society,2020,45(6):1925-1936.
[29] 姜朔. 复杂煤层条件下综采工作面VR仿真系统及关键技术研究[D]. 太原:太原理工大学,2021. JIANG Shuo. Research on VR simulation system and key technology of fully mechanized coal-mining face under complex coal seam conditions[D]. Taiyuan:Taiyuan University of Technology,2021.
[30] 崔涛. 基于真实开采数据的采运装备虚拟规划方法研究[D]. 太原:太原理工大学,2022. CUI Tao. Research on virtual planning method of mining and transportation equipment based on real mining data[D]. Taiyuan:Taiyuan University of Technology,2022.
[31] 张帆,葛世荣. 矿山数字孪生构建方法与演化机理[J]. 煤炭学报,2023,48(1):510-522. ZHANG Fan,GE Shirong. Construction method and evolution mechanism of mine digital twins[J]. Journal of China Coal Society,2023,48(1):510-522.
[32] 蔡峰. 蒙陕地区中厚煤层智能化综采工作面关键技术应用研究[J]. 中国煤炭,2022,48(5):41-46. CAI Feng. Application study on the key technology for intelligent fully mechanized mining face in medium-thick coal seam in Inner Mongolia-Shaanxi region[J]. China Coal,2022,48(5):41-46.
[33] 雷晓荣,李明星,岳辉,等. 透明工作面数字孪生系统关键技术及实现[J]. 智能矿山,2022,3(7):50-56. LEI Xiaorong,LI Mingxing,YUE Hui,et al. Key technologies and implementation of digital twin system for transparent workface[J]. Journal of Intelligent Mine,2022,3(7):50-56.
[34] 迟焕磊,袁智,曹琰,等. 基于数字孪生的智能化工作面三维监测技术研究[J]. 煤炭科学技术,2021,49(10):153-161. CHI Huanlei,YUAN Zhi,CAO Yan,et al. Study on digital twin-based smart fully-mechanized coal mining workface monitoring technology[J]. Coal Science and Technology,2021,49(10):153-161.
[35] 符大利. 基于数字孪生驱动的综采工作面远程监控系统[J]. 煤炭技术,2022,41(4):175-178. FU Dali. Remote monitoring system of fully mechanized mining face based on digital twin drive[J]. Coal Technology,2022,41(4):175-178.
[36] 毛善君,鲁守明,李存禄,等. 基于精确大地坐标的煤矿透明化智能综采工作面自适应割煤关键技术研究及系统应用[J]. 煤炭学报,2022,47(1):515-526. MAO Shanjun,LU Shouming,LI Cunlu,et al. Key technologies and system of adaptive coal cutting in transparent intelligent fully mechanized coal mining face based on precisegeodetic coordinates[J]. Journal of China Coal Society,2022,47(1):515-526.
[37] 马宏伟,王世斌,毛清华,等. 煤矿巷道智能掘进关键共性技术[J]. 煤炭学报,2021,46(1):310-320. MA Hongwei,WANG Shibin,MAO Qinghua,et al. Key common technology of intelligent heading in coal mine roadway[J]. Journal of China Coal Society,2021,46(1):310-320.
[38] 吴淼,李瑞,王鹏江,等. 基于数字孪生的综掘巷道并行工艺技术初步研究[J]. 煤炭学报,2020,45(增刊1):506-513. WU Miao,LI Rui,WANG Pengjiang,et al. Preliminary study on the parallel technology of fully mechanized roadway based on digital twin[J]. Journal of China Coal Society,2020,45(S1):506-513.
[39] 王岩,张旭辉,曹现刚,等. 掘进工作面数字孪生体构建与平行智能控制方法[J]. 煤炭学报,2022,47(增刊1):384-394. WANG Yan,ZHANG Xuhui,CAO Xiangang,et al. Construction of digital twin and parallel intelligent control method for excavation face[J]. Journal of China Coal Society,2022,47(S1):384-394.
[40] 杨耀智. 煤矿远程智能掘进面临的挑战及发展趋势[J]. 内蒙古煤炭经济,2022(11):148-150. YANG Yaozhi. Challenges and development trends of remote intelligent mining in coal mines[J]. Inner Mongolia Coal Economy,2022(11):148-150.
[41] 王虹,王步康,张小峰,等. 煤矿智能快掘关键技术与工程实践[J]. 煤炭学报,2021,46(7):2068-2083. WANG Hong,WANG Bukang,ZHANG Xiaofeng,et al. Key technology and engineering practice of intelligent rapid heading in coal mine[J]. Journal of China Coal Society,2021,46(7):2068-2083.
[42] 徐伟锋,金向阳,张丽平. 煤矿掘进机器人视觉位姿感知与控制关键技术[J]. 煤矿机械,2022,43(5):181-184. XU Weifeng,JIN Xiangyang,ZHANG Liping. Key technology of vision pose perception and control of coal mine tunneling robot[J]. Coal Mine Machinery,2022,43(5):181-184.
[43] 张元鹏,路志国. 煤矿掘进远程智能控制系统的设计与发展[J]. 内蒙古煤炭经济,2023(3):157-159. ZHANG Yuanpeng,LU Zhiguo. Design and development of remote intelligent control system for coal mine excavation[J]. Inner Mongolia Coal Economy,2023(3):157-159.
[44] 雷孟宇,张旭辉,杨文娟,等. 煤矿掘进装备视觉位姿检测与控制研究现状与趋势[J]. 煤炭学报,2021,46(增刊2):1135-1148. LEI Mengyu,ZHANG Xuhui,YANG Wenjuan,et al. Current status and trend of research on visual pose detection and control of heading equipment in coal mines[J]. Journal of China Coal Society,2021,46(S2):1135-1148.
[45] 张旭辉,吕欣媛,王甜,等. 数字孪生驱动的掘进机器人决策控制系统研究[J]. 煤炭科学技术,2022,50(7):36-49. ZHANG Xuhui,LYU Xinyuan,WANG Tian,et al. Research on decision control system of tunneling robot driven by digital twin[J]. Coal Science and Technology,2022,50(7):36-49.
[46] 张旭辉,张超,王妙云,等. 数字孪生驱动的悬臂式掘进机虚拟操控技术[J]. 计算机集成制造系统,2021,27(6):1617-1628. ZHANG Xuhui,ZHANG Chao,WANG Miaoyun,et al. Digital twin-driven virtual control technology of cantilever roadheader[J]. Computer Integrated Manufacturing Systems,2021,27(6):1617-1628.
[47] 杨健健,张强,吴淼,等. 巷道智能化掘进的自主感知及调控技术研究进展[J]. 煤炭学报,2020,45(6):2045-2055. YANG Jianjian,ZHANG Qiang,WU Miao,et al. Research progress of autonomous perception and control technology for intelligent heading[J]. Journal of China Coal Society,2020,45(6):2045-2055.
[48] 任文涛,朱礼建,梁志斌,等. 唐口煤业10304综掘工作面数字孪生系统设计[J]. 采矿技术,2023,23(1):199-201. REN Wentao,ZHU Lijian,LIANG Zhibin,et al. Design of digital twin system for 10304 fully mechanized excavation face in Tangkou Coal Mine[J]. Mining Technology,2023,23(1):199-201.
[49] COETZEE B J,SONNENDECKER P W. Fully automated coal quality control using digital twin material tracking and statistical model predictive control for yield optimization during production of semi soft coking-and station coal[J]. Journal of the Southern African Institute of Mining and Metallurgy,2022,122(8):429-435.
[50] 王开松,徐记顺,靳华伟,等. 基于UWB技术的矿井辅助运输装备监测[J]. 绥化学院学报,2022,42(3):147-151. WANG Kaisong,XU Jishun,JIN Huawei,et al. Monitoring of mine auxiliary transportation equipment based on UWB technology[J]. Journal of Suihua University,2022,42(3):147-151.
[51] 王伟. 基于数字孪生的掘进机截割状态监测技术研究[J]. 内蒙古煤炭经济,2021(9):50-51. WANG Wei. Research on the monitoring technology of cutting condition of tunneling machine based on digital twin[J]. Inner Mongolia Coal Economy,2021(9):50-51.
[52] 薛旭升,任众孚,毛清华,等. 基于数字孪生的煤矿掘进机器人纠偏控制研究[J]. 工矿自动化,2022,48(1):26-32. XUE Xusheng,REN Zhongfu,MAO Qinghua,et al. Research on deviation correction control of coal mine roadheader based on digital twin[J]. Industry and Mine Automation,2022,48(1):26-32.
[53] 胡志强,李季涛,王洪鑫. 基于数字孪生的煤矿企业调车作业监控系统[J]. 铁路计算机应用,2023,32(2):68-72. HU Zhiqiang,LI Jitao,WANG Hongxin. Monitoring system of shunting operation in coal mine enterprise based on digital twins[J]. Railway Computer Application,2023,32(2):68-72.
[54] 赵墨波. 数字孪生驱动的协作机器人状态监测方法研究[J]. 煤矿机械,2023,44(8):210-212. ZHAO Mobo. Research on state monitoring method of cooperative robot driven by digital twin[J]. Coal Mine Machinery,2023,44(8):210-212.
[55] 李晓雪,韩赛伟. 基于数字孪生的采煤机预测性维护研究[J]. 煤矿机械,2022,43(1):173-176. LI Xiaoxue,HAN Saiwei. Research on predictive maintenance of shearer based on digital twin[J]. Coal Mine Machinery,2022,43(1):173-176.
[56] 张旭辉,鞠佳杉,杨文娟,等. 基于数字孪生的复杂矿用设备预测性维护系统[J]. 工程设计学报,2022,29(5):643-650,664. ZHANG Xuhui,JU Jiashan,YANG Wenjuan,et al. Predictive maintenance system for complex mining equipment based on digital twin[J]. Chinese Journal of Engineering Design,2022,29(5):643-650,664.
[57] 经海翔,黄友锐,徐善永,等. 基于数字孪生和概率神经网络的矿用通风机预测性故障诊断研究[J]. 工矿自动化,2021,47(11):53-60. JING Haixiang,HUANG Yourui,XU Shanyong,et al. Research on the predictive fault diagnosis of mine ventilator based on digital twin and probabilistic neural network[J]. Industry and Mine Automation,2021,47(11):53-60.
[58] 鲁泽明,王秀莉. 基于数字孪生技术的矿用设备预测性维护方案研究[J]. 数字通信世界,2022(12):21-23. LU Zeming,WANG Xiuli. Research on predictive maintenance scheme of mining equipment based on digital twin technology[J]. Digital Communication World,2022(12):21-23.
[59] 刘送永,刘强,崔玉明,等. 煤矿悬臂式掘进机多信息监测系统设计与研究[J]. 煤炭学报,2023,48(6):2564-2578. LIU Songyong,LIU Qiang,CUI Yuming,et al. Design and research on multi-information monitoring system for roadheader[J]. Journal of China Coal Society,2023,48(6):2564-2578.
[60] 张旭辉,张雨萌,王岩,等. 融合数字孪生与混合现实技术的机电设备辅助维修方法[J]. 计算机集成制造系统,2021,27(8):2187-2195. ZHANG Xuhui,ZHANG Yumeng,WANG Yan,et al. Auxiliary maintenance method for electromechanical equipment integrating digital twin and mixed reality technology[J]. Computer Integrated Manufacturing Systems,2021,27(8):2187-2195.
[61] 张雨萌. 数字孪生驱动的矿用设备维修MR辅助指导系统[D]. 西安:西安科技大学,2020. ZHANG Yumeng. DT-driven aided guidance system of mine equipment maintenance using MR[D]. Xi'an:Xi'an University of Science and Technology,2020.
[62] 丁华,杨亮亮,杨兆建,等. 数字孪生与深度学习融合驱动的采煤机健康状态预测[J]. 中国机械工程,2020,31(7):815-823. DING Hua,YANG Liangliang,YANG Zhaojian,et al. Health prediction of shearers driven by digital twin and deep learning[J]. China Mechanical Engineering,2020,31(7):815-823.
[63] HUANG Yourui,YUAN Biao,XU Shanyong,et al. Fault diagnosis of permanent magnet synchronous motor of coal mine belt conveyor based on digital twin and ISSA-RF[J]. Processes,2022,10(9). DOI: 10.3390/pr10091679.
[64] ISLAVATH S R,DEB D,KUMAR H. Life cycle analysis and damage prediction of a longwall powered support using 3D numerical modelling techniques[J]. Arabian Journal of Geosciences,2019,12(14). DOI: 10.1007/s12517-019-4574-y.
[65] SEMENOV Y,SEMENOVA O,KUVATAEV I. Solutions for digitalization of the coal industry implemented in UC Kuzbassrazrezugol[J]. E3S Web of Conferences,2020,174. DOI: 10.1051/e3sconf/202017401042.
[66] 马文昕. BIM+GIS数字孪生技术在煤矿全景数字化智能综合管控中的应用[J]. 中国高新科技,2022(16):39-41. MA Wenxin. Application of BIM+GIS digital twin technology in panoramic digital intelligent comprehensive management and control of coal mine[J]. China High and New Technology,2022(16):39-41.
[67] CHEN Long,HU Xiaoming,WANG Ge,et al. Parallel mining operating systems:from digital twins to mining intelligence[C]. IEEE 1st International Conference on Digital Twins and Parallel Intelligence,Beijing,2021:469-473.
[68] 肖粲俊,刘红梅,石发强,等. 基于数字孪生的煤矿智能管控平台架构研究与实现[J]. 矿业安全与环保,2023,50(5):43-49. XIAO Canjun,LIU Hongmei,SHI Faqiang,et al. Research and implementation of intelligent control platform architecture for coal mine based on digital twin[J]. Mining Safety & Environmental Protection,2023,50(5):43-49.
[69] 宋立. 三维可视化生产管控平台在集团型矿山企业的实现及应用[J]. 中国金属通报,2022(3):234-236. SONG Li. Implementation and application of 3D visualized production control platform in group mining enterprises[J]. China Metal Bulletin,2022(3):234-236.
[70] 赵建文,孟旭辉. 数字孪生在煤矿电网中的应用研究[J]. 工矿自动化,2023,49(2):38-46. ZHAO Jianwen,MENG Xuhui. Research on the application of digital twin in coal mine power grid[J]. Journal of Mine Automation,2023,49(2):38-46.
[71] 赵银燕,杨凯. 柿竹园多金属矿三维可视化综合管控系统设计与实现[J]. 采矿技术,2022,22(6):4-9. ZHAO Yinyan,YANG Kai. Design and implementation of 3D visualized comprehensive control system for Shizhuyuan Polymetallic Mine[J]. Mining Technology,2022,22(6):4-9.
[72] 陶飞,刘蔚然,张萌,等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统,2019,25(1):1-18. TAO Fei,LIU Weiran,ZHANG Meng,et al. Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing Systems,2019,25(1):1-18.
[73] 陶飞,张辰源,戚庆林,等. 数字孪生成熟度模型[J]. 计算机集成制造系统,2022,28(5):1267-1281. TAO Fei,ZHANG Chenyuan,QI Qinglin,et al. Digital twin maturity model[J]. Computer Integrated Manufacturing Systems,2022,28(5):1267-1281.
[74] 孟峰,张磊,赵子未,等. 基于物联网的智能传感器技术及其应用[J]. 工矿自动化,2021,47(增刊1):48-50. MENG Feng,ZHANG Lei,ZHAO Ziwei,et al. Application of intelligent sensor technology based on Internet of things[J]. Industry and Mine Automation,2021,47(S1):48-50.
[75] 陶飞,马昕,戚庆林,等. 数字孪生连接交互理论与关键技术[J]. 计算机集成制造系统,2023,29(1):1-10. TAO Fei,MA Xin,QI Qinglin,et al. Theory and key technologies of digital twin connection and interaction[J]. Computer Integrated Manufacturing Systems,2023,29(1):1-10.
[76] 包建军. 智能矿山高精度位置服务系统研究现状与展望[J]. 智能矿山,2021,2(3):46-52. BAO Jianjun. Research status and prospect of high precision location service system for intelligent mines[J]. Journal of Intelligent Mine,2021,2(3):46-52.
[77] 陶飞,张贺,戚庆林,等. 数字孪生模型构建理论及应用[J]. 计算机集成制造系统,2021,27(1):1-15. TAO Fei,ZHANG He,QI Qinglin,et al. Theory of digital twin modeling and its application[J]. Computer Integrated Manufacturing Systems,2021,27(1):1-15.
[78] 谢嘉成,王学文,杨兆建. 基于数字孪生的综采工作面生产系统设计与运行模式[J]. 计算机集成制造系统,2019,25(6):1381-1391. XIE Jiacheng,WANG Xuewen,YANG Zhaojian. Design and operation mode of production system of fully mechanized coal mining face based on digital twin theory[J]. Computer Integrated Manufacturing Systems,2019,25(6):1381-1391.
[79] 李鹏,程建远. 采掘工作面地质信息数字孪生技术[J]. 煤田地质与勘探,2022,50(11):174-186. LI Peng,CHENG Jianyuan. Digital twin technology of geological information in mining and excavation working face[J]. Coal Geology & Exploration,2022,50(11):174-186.
[80] 李伟,叶鸥,刘辉,等. 基于数字孪生技术的大型煤矿远程智能监控研究[J]. 计算机测量与控制,2023,31(11):204-211. LI Wei,YE Ou,LIU Hui,et al. Research on remote intelligent monitoring of large coal mines based on digital twin technology[J]. Computer Measurement & Control,2023,31(11):204-211.
[81] 邢震,韩安,陈晓晶,等. 基于工业互联网的智能矿山灾害数字孪生研究[J]. 工矿自动化,2023,49(2):23-30,55. XING Zhen,HAN An,CHEN Xiaojing,et al. Research on intelligent mine disaster digital twin based on industrial Internet[J]. Journal of Mine Automation,2023,49(2):23-30,55.
[82] 邢震. 浅埋厚煤层地表漏风对采空区煤自燃影响数值模拟研究[J]. 工矿自动化,2021,47(2):80-87,103. XING Zhen. Numerical simulation study on the influence of surface air leakage in shallow thick coal seam on coal spontaneous combustion in goaf[J]. Industry and Mine Automation,2021,47(2):80-87,103.
[83] 邢震. 特厚煤层自燃关键参数现场观测及动态数值模拟研究[J]. 煤炭工程,2020,52(2):111-115. XING Zhen. In-situ observation and dynamic numerical simulation research on the key parameters of extra-thick coal seam spontaneous combustion[J]. Coal Engineering,2020,52(2):111-115.
[84] 邢震. 数字孪生驱动的煤矿多元业务全局动态协同管控[J]. 工矿自动化,2023,49(7):60-66,82. XING Zhen. Global dynamic collaborative management and control of diversified business in coal mines driven by digital twins[J]. Journal of Mine Automation,2023,49(7):60-66,82.
[85] 郭一楠,杨帆,葛世荣,等. 知识驱动的智采数字孪生主动管控模式[J]. 煤炭学报,2023,48(增刊1):334-344. GUO Yinan,YANG Fan,GE Shirong,et al. Novel knowledge-driven active management and control scheme of smart coal mining face with digital twin[J]. Journal of China Coal Society,2023,48(S1):334-344.
[86] 尤秀松,葛世荣,郭一楠,等. 智采工作面三机数字孪生驱动控制架构 [J/OL]. 煤炭学报:1-11[2024-01-11]. http://kns.cnki.net/kcms/detail/11.2190.TD.20230926.1756.004.html. YOU Xiusong,GE Shirong,GUO Yinan,et al. Digital twin-driven control construction for three machines of smart coal mining face[J/OL]. Journal of China Coal Society:1-11[2024-01-11]. http://kns.cnki.net/kcms/detail/11.2190.TD.20230926.1756.004.html.
-
期刊类型引用(2)
1. 吉同超,黄利杰,史家敏. 镜质组反射率测定实验中手动检测与自动检测对比研究. 山西冶金. 2024(11): 14-15+18 . 百度学术
2. 江莉娟,邓存宝,王彩萍,雷昌奎,年军. 煤自燃指标气体分析与分级预警. 西安科技大学学报. 2023(06): 1088-1098 . 百度学术
其他类型引用(1)