Status and prospect of the application of mine DC electrical method technology
-
摘要: 矿井直流电法作为一种高效的地球物理勘探手段,在精准圈定各类异常区方面发挥了重要作用。井下探测空间小、干扰多、技术要求高,其发展受到诸多因素限制,因此,建立快速采掘模式下与智能化矿井生产相匹配的矿井直流电法技术体系意义重大。从基本原理、技术发展及分类3个方面对矿井直流电法进行了概述,总结了矿井直流电法用于顶底板探查、巷道超前探测、工作面内异常区探查等方面的最新进展;对矿井直流电法仪器与设备研发进展进行了分析,列举了常见的几类矿井直流电法仪器;分析了矿井直流电法在解决工程问题中存在的关键问题:① 目前矿井直流电法超前探测技术在含/导水异常体圈定空间的定位精度低,同时存在有效探测距离不足的问题。② 矿井直流电法施工空间狭小,在有限的测试空间内,多方位地质异常体电性响应叠加,增加了数据处理和解释难度。③ 矿井直流电法在井下应用时易受场地金属源干扰,特别是受掘进机、液压支架、锚锁(网)支护、轨道、输送管道等大型金属件影响。对矿井直流电法未来发展方向进行了展望:① 构建多源地电场数据响应特征库。② 多源数据融合解释。③ 建立矿井直流电法智能化监测体系。Abstract: As an efficient means of geophysical exploration, mine DC electrical method plays an important role in accurately circling various types of anomalous zones. The development of underground detection is limited by many factors due to small space, interference and high technological requirements. Therefore, it is significant to establish a mine DC electrical method technology system that matches the intelligent mine production under the rapid extraction mode. The paper gives an overview of mine DC electrical method from three aspects, namely, basic principle, technology development and classification. It summarizes the latest progress of mine DC electrical method used in roof and floor exploration, roadway advance detection, and anomaly area exploration in the working face, etc. It analyzes the progress of the research and development of mine DC electrical method instruments and equipment. It enumerates several common types of mine DC electrical method instruments. It analyzes the key problems of mine DC electrical method in solving the engineering problems. ① The current mine DC electrical method advance detection technology has low positioning precision in the circled space of water-bearing/conducting anomalies. At the same time, there is the problem of insufficient effective detection distance. ② The construction space of mine DC electrical method is narrow, and the electrical response of multi-directional geological anomalies is superimposed in the limited testing space. It increases the difficulty of data processing and interpretation. ③ The mine DC electrical method is susceptible to interference from metal sources at the site when applied underground, especially by large metal parts such as roadheaders, hydraulic supports, anchor locks (nets) supports, rails, and conveying pipelines. The future development direction of the mine DC electrical method is prospected. ① It is suggested to construct a multi-source geoelectric field data response feature library. ② It is suggested to obtain interpretation of multi-source data fusion. ③ It is suggested to establish the intelligent monitoring system of mine DC electrical method.
-
0. 引言
煤矿智能化无人开采是煤炭开采技术发展的终极目标,是煤矿智能化建设的核心,对实现煤矿减人、增安、提效具有重要意义[1-3]。采煤机作为综采工作面的核心装备,实现其智能截割调控是智能化无人开采的必要基础保障[4]。
采煤机智能截割调控包含截割模板生成、截割路径规划和智能调高控制3个方面,分别对应采煤机运行中的智能感知、智能决策和智能执行。
截割模板生成是确定采煤机滚筒截割高度的重要依据。目前普遍方法是依据煤矿高精度三维地质模型数据,沿工作面倾向剖切获得截割模板数据。李森等[5]以地质模型数据为依据,采用基于趋势分解与机器学习的滚筒截割高度预测方法生成截割模板。侯运炳等[6]利用煤层精细化物探数据构建工作面高精度三维地质模型,并以此提取截割模板。李旭等[7]利用煤矿地质数据、工作面切眼数据和工作面运输巷与回风巷实际数据,采用三次样条插值方法建立了初始三维数字截割模板。但现有方法缺乏对采煤机滚筒状态的分析,使得截割模板生成质量难以保证,甚至会造成无法根据工作面实际煤层变化灵活指导采煤机作业。
截割路径规划是基于生成的初始截割模板,结合预测模型或人工经验等,规划未来时刻的采煤机截割路径,一方面实现工作面倾向的顶底板最优截割曲线(与煤层边界误差最小),另一方面实现工作面连续推进。司垒等[8]建立了多输入、单输出的最小二乘支持向量机滚动预测模型,提出了一种基于煤层分布预测的采煤机截割路径规划方法。董刚等[9]针对采煤机上滚筒截割过程中在顶板煤岩界面弯曲区域极易截割到顶板岩石的问题,提出了一种基于虚拟煤岩界面的采煤机上滚筒路径规划方法。然而现有方法未充分考虑工作面起伏情况和地质环境条件,导致得到的截割路径不是最优,进而使得采煤机无法精准调整滚筒截割高度,影响采煤效率和质量。
智能调高控制是通过软件程序及采煤机高精度控制单元,在截割过程中使滚筒实现自适应调高。符大利[10]分析了基于透明地质模型的截割曲线规划原理,建立了透明工作面自动调高模型,并进行了采煤机规划调高的工程应用。钟立雯[11]设计了一种基于极限学习机的PID控制方法,实现了采煤机的非线性、延时自适应调高。王焕文等[12]针对薄煤层等复杂地质条件下的采煤机自动化开采作业,构建了基于单向示范刀的采煤机记忆截割模型,依照该模型使采煤机实现智能调高,提高了示范刀采样轨迹和截割轨迹的吻合度。李旭东[13]提出了采煤机自动调高控制策略及截割曲线的拟合方式,在此基础上设计了自动调高控制系统。刘送永等[14]采用基于新型神经网络观测器的间接自适应规定性能控制方法,实现采煤机自动调高控制。许连丙[15]研究了基于Elman神经网络的采煤机智能调高控制算法,实现了采煤机截割滚筒自动调高。但是,目前调高控制方法依赖采煤机自身控制单元(例如记忆截割模式),一旦地质条件发生变化,无法及时实现自适应调控,影响截割效果。
为解决上述问题,本文提出了一种基于工艺驱动的采煤机智能截割调控方案。按照工作面液压支架编号采集采煤机滚筒截割高度数据并进行处理,动态生成截割模板;结合工作面顶底板写实数据与人工割煤经验,对截割模板进行修正,得到最优截割路径;根据不同采煤工艺阶段,实现采煤机滚筒自适应调高。该方案适用于不同采煤工艺的综采工作面,可为推进无人化采煤提供技术支撑。
1. 基于工艺驱动的采煤机智能截割调控总体方案
基于工艺驱动的采煤机智能截割调方案如图1所示。集控上位机软件平台位于地面控制中心操作岛,与采煤机通过矿井环网连接。结合采煤机滚筒截割高度历史数据,对采集的滚筒截割高度实时数据进行处理,生成采煤机截割模板;结合工作面顶底板写实数据与人工割煤经验,规划采煤机下一刀的顶底板截割路径;依据采煤工艺,下发滚筒截割高度调节量至采煤机,形成新一代“井上智能决策、煤机智能调控”的采煤机智能截割模式。
2. 基于工艺驱动的采煤机智能截割调控关键技术
2.1 采煤机截割模板动态生成
现有采煤机记忆截割系统输入数据来源于传感器采集的截割高度数据[16-18],并没有考虑支架的位置和宽度,因此,无法在截割模板中准确提取采煤机滚筒到达每个支架时所需的截割高度数据,导致截割模板数据(顶底板曲线)与真实设备的安装部署条件不匹配,截割模板数据可信度明显降低,造成未来的截割路径与煤岩分界线偏差大。因此,本文按照工作面液压支架编号采集采煤机滚筒截割高度数据并进行处理,动态生成采煤机截割模板,具体流程如图2所示。
在采煤机截割过程中,采煤机截割位置支架编号不断变化,左右滚筒位置支架编号也不断变化,集控上位机软件平台实时采集滚筒截割高度数据,并按照滚筒位置支架编号添加到滚筒截割高度数组;同时,集控上位机软件平台对滚筒位置进行周期校验,判断是否存在跳变异常现象(即支架编号不连续),使用拉格朗日多项式插值法补齐跳变位置数据,采用修剪均值算法优化整个数组,最终获得完整的采煤机滚筒截割高度数组。
在采煤机割一刀煤结束时,根据采煤机滚筒截割高度数组,按照0.1架的间隔,采用分段线性插值算法得到顶底板2条曲线。结合历史顶底板曲线数据,使用最近邻插值法优化这2条曲线数据,使滚筒截割高度数据更连续;使用高斯滤波算法去除顶底板曲线中的波峰与波谷,使滚筒截割高度数据更平滑;根据人工设定的阈值,分别对顶底板曲线进行插值平滑处理,最终生成下一刀采煤机截割模板。插值平滑处理具体实现方法:以顶板曲线数据为例,遍历每个顶板曲线数据,按照当前支架编号向小号方向计数N个顶板曲线数据(不足N个从大号方向补全),向大号方向计数N个顶板曲线数据(不足N个从小号方向补全),相邻2N个顶板曲线数据计算平均值,当前顶板曲线数据与平均值求差值,如果差值超过人工设定阈值,则认为当前顶板曲线数据不可靠,采用平均值替换。
2.2 采煤机截割路径优化
采煤机在截割过程中易受到煤层厚度、地质硬度等环境因素的影响,导致截割质量不稳定,截割模板不准确[19]。同时,由于缺乏对已开采空间围岩状态的持续分析,无法对已完成开采的顶底板曲线存在的问题进行综合评估分析,制定相应的曲线修正方案。因此,本文基于工作面顶底板写实数据,结合人工割煤经验,通过集控上位机软件平台预先规划采煤机截割路径,并实时调节截割路径,以实现滚筒截割高度与工作面顶底板曲线的自适应耦合,如图3所示。
1) 工作面顶底板写实数据录入及上传。在每个生产班开始前,井下采煤工人巡检工作面,观察顶底板工程质量,使用APP移动端软件记录工作面顶底板写实数据,上传顶底板照片、录像等真实采场环境素材,根据割煤经验输入注意信息;通过工作面无线网络,将上述数据上传至地面集控上位机软件平台。
2) 工作面顶底板写实数据确认。地面操控中心人员使用集控上位机软件平台人机交互界面查看截割模板,以及工作面顶底板写实数据、采场照片、录像及注意信息,参照工作面倾向起伏曲线数据,调整截割模板数据,并存入SQL关系型数据库。
3) 截割路径预先规划。在采煤机截割过程中,地面操控中心人员关注采煤机截割高度与截割模板之间的差异,同时结合实际情况(如视频、滚筒截割高度),利用集控上位机软件平台预先规划截割路径。
4) 截割路径实时干预。在采煤机截割过程中,集控上位机软件平台自动下发滚筒截割高度数据,控制滚筒采高、卧底量。当地面操控中心人员发现滚筒截割高度不满足采场空间需求时,可使用集控上位机软件平台人机交互功能在线调节采煤机截割路径。
2.3 采煤机自适应调高控制
目前,煤矿综采工作面自动化开采控制大多数处于单机设备自动控制、简单多机设备交互协同辅助的状态[20]。由于煤矿开采设备数量大、工艺复杂度高,且采煤工艺、设备控制工序需根据实际生产情况动态调整频繁[21],目前的设备交互协同控制无法满足生产系统整体层面上的调度控制需求,需要将设备间协同控制与生产实际工艺需求有机结合起来。因此,本文通过编辑采煤工艺和设置截割模板数据,形成采煤工艺表文件;集控上位机软件平台依据采煤工艺表文件,下发采煤机滚筒截割高度调节量,实现采煤机自适应调高控制,如图4所示。
根据采煤机运行方向,将采煤工艺划分为多个工序阶段,每个工序阶段中根据采煤机运行位置与方向作为动作的关联条件,进行采煤机控制逻辑编辑,形成采煤工艺表文件。采煤工艺表文件具备采煤机全工作面割煤工序控制逻辑,该控制逻辑将采煤机在工作面中部段、端部清浮煤段、斜切进刀段、三角煤区域段的工序进行分解,转换为不同采煤工序阶段。每个采煤工序阶段可通过接收上一个工序的反馈数据、延迟时间等逻辑判断作为该采煤工序阶段执行逻辑判断依据,实现整个采煤工艺循环控制。
每个采煤工序阶段对应一个表单化的控制属性参数配置信息,用来配置采煤机控制工序执行的触发条件和结束条件,以及滚筒截割高度、采煤机运行方向等。根据实际采煤生产过程需要,通过控制属性参数配置对每个采煤工序滚筒的具体控制方式进行进一步细化,确定滚筒截割路径。
集控上位机软件平台加载采煤工艺表文件后,将其转换为可执行控制逻辑程序,程序接收采煤机运行状态参数,分析采煤机运行方向及所在位置,判断采煤工艺执行阶段、工序任务是否需要切换;依据采煤机运行方向及所在位置进行采煤工序切换,判断采煤工序触发条件,进行工序调度,按照工序属性参数配置信息,向采煤机发送调度数据(包括截割模板数据、截割路径调整量等),采煤机接收数据后通过解析数据执行相应动作,从而确保采煤机滚筒截割按照参数配置自适应调高。
3. 采煤机智能截割调控示范应用
为验证基于工艺驱动的采煤机智能截割调控应用效果,在神东煤炭集团榆家梁煤矿43207工作面开展了示范应用。
在采煤机截割模板的基础上,规划截割调整量,利用采煤工艺驱动,按照编辑的采煤工序及截割参量,调度采煤机运行方向及速度,并按0.1架的间距,将滚筒截割高度数据自动下发至采煤机执行单元,地面集控上位机软件平台即可实现采煤机全工作面智能截割工序的控制。
2022年10月1日,榆家梁煤矿43207工作面建成采煤机智能截割调控新模式以来,逐渐形成常态化使用,并连续多次刷新单班生产纪录,其中,10月4日零点班首次完成单班完整地面割煤6刀,10月7日首次完成圆班完整地面割煤13刀,10月16日圆班割煤13刀70架,相比传统人工平均圆班生产12刀,效率提升达13%。
采煤机智能截割调控方案的示范应用,实现了无人化采煤常态化作业,将生产班工作面作业人员由3人减少至工作面中部无人,两端头固定岗位监护采煤作业,采煤机自动割煤率达97%以上。
4. 结论
1) 按照工作面液压支架编号实时采集采煤机滚筒截割高度数据,并结合采煤机滚筒截割高度历史数据对实时数据进行处理,动态生成采煤机截割模板。
2) 结合工作面顶底板写实数据与人工割煤经验,预先规划截割路径并实时干预,达到滚筒截割高度与采场空间顶底板曲线自适应耦合的效果。
3) 基于采煤机工艺驱动控制滚筒截割高度,从而实现采煤机自适应调高控制。
-
场源性质 测试方法 技术原理 技术特点 应用领域 天然场源 自然电位法 通过研究自然电场分布规律达到找矿或解决其他地质问题的目的 测试方式简单,无需向被测体供电 矿井采掘围岩破坏规律研究、地下水渗流探查等 人工场源 充电法 对被测地质体充电,并观测充电电场的分布,从而推断地质体赋存情况 测试方式较简单,工作量小,但应用条件受限制,即被测体为良导体,且其围岩的电阻率稳定 早期多用于找煤工作 时域激电法 以岩矿石极化率为基础的人工源勘探方法 仪器设备较笨重,采集信号受井下环境干扰 早期找水方面应用较多 直流电透视法 与矿井无线电透视原理类似,采用直流供电,研究巷道及工作面电场变化规律 现场测试需两巷道配合采集工作,对现场测试环境要求较高,工作量较大 探测工作面内部及其顶底板围岩体的含水构造等 电测深/电剖面 通过布设4道电极并改变电极间距离,获得电测深或电剖面数据 工作量大,测试效率低,数据量少 最初电法勘探中该方法使用较多,目前该方法难以满足实际测试需求 高密度电法 集电测深法和电剖面法于一体的阵列式智能勘探方法 现场施工方便,测试速度快,精度高,对富水区等异常响应灵敏 可探测工作面内部及其顶底板围岩体的含水构造,进行巷道超前探测,可通过孔−孔、孔−巷等布置方式对工作面顶底板破坏范围进行监测 网络并行电法 采用拟地震式的数据采集方式,解决常规直流电法仪器存在的无法串行采集等问题 超高密度电法 采用一次布极,采集所有可能组合电极间的电位信息,并且避开视电阻率概念,利用处理软件直接反演获取断面真电阻率 主要以地面应用为主 表 2 常见矿井直流电法仪器功能及特点
Table 2 Functions and characteristics of common DC electrical instruments in mines
仪器名称 功能 仪器特点 YD32(A)矿用高分辨率电法仪 具有电测深、电剖面和超前探测等功能 大功率输出增加了探测距离,实现了超前探测的电极全自动切换 YDZ(A)直流电法仪 体积小、施工方便、性能稳定可靠,YDZ(B)型抗干扰能力较强 YDZ(B)直流电法仪 YDZ24矿用本安型直流电法仪 具有电阻率法、自然电位法探测等功能 主从机设计,配备高清触摸屏,可以根据需求增加仪器道数 YDE24矿用本安型地震电法仪从机 具有电阻率法、自然电位法和地震单分量或多分量地震数据采集 YDZ32矿用直流电法仪 具有电测深、电剖面和超前探测法功能 测量精度高、抗干扰能力强,探测结果为2D图,成果解释直观 YDG64矿用高密度电法仪 具有高密度电法采集功能 YDZ16(B)矿用多道并行直流电法仪器 具有自然电位法、电测深、电剖面法、超前探测等功能 多通道设计且在采集过程中电极可以自动切换 YBT96矿用交直流并行电法透视仪 可实现双巷高密度电透、多频电透、三维全透视 除发射电极外,其他的电极参与同步接收,实现同源、同场观测 YDZ75(A)矿用本安型并行直流电法仪器 具有自然电位法、电测深、电剖面法、超前探测等功能 接收、发射、电源系统一体化设计,采集速度快,抗工频干扰、随机干扰能力强 YDJ256−03矿用浇筑兼本安型高密度电法仪 具有高密度电法采集功能 集电源、数据采集和成图于一体,且可一键完成测量 YBD12矿用本安型网络电法仪 具有电阻率法、自然电位法、充电法、激电法(时间域和频率域)等探测功能,YSD11增加了多分量地震勘探功能,YZD11增加了多波多分量地震探测功能 具有一键成图模式,配备高清触摸屏,可以实时显示视电阻率剖面图、视极化率剖面图等 YSD11矿用本安型微震电法仪 具有一键成图模式,配备高清触摸屏更加智能,但主机和基站独立增大了工作强度 YZD11矿用本安型槽波地震电法仪 YDZ24矿用本安型直流电法仪 具有电阻率法、自然电位法探测等功能 主从机设计,配备高清触摸屏,可以根据需求增加仪器道数 YDE24矿用本安型地震电法仪从机 具有电阻率法、自然电位法和地震单分量或多分量地震数据采集 -
[1] 王双明,申艳军,宋世杰,等. “双碳”目标下煤炭能源地位变化与绿色低碳开发[J]. 煤炭学报,2023,48(7):2599-2612. WANG Shuangming,SHEN Yanjun,SONG Shijie,et al. Change of coal energy status and green and low-carbon development under the "dual carbon" goal[J]. Journal of China Coal Society,2023,48(7):2599-2612.
[2] 国家统计局. 中华人民共和国2022年国民经济和社会发展统计公报[EB/OL]. [2023-06-29]. https://www.gov.cn/xinwen/2023-02/28/content_5743623.htm?eqid=cb48c394000725f6000000026458a34d. National Bureau of Statistics. Statistical communique of the People's Republic of China on the 2022 national economic and social development [EB/OL]. [2023-06-29]. https://www.gov.cn/xinwen/2023-02/28/content_5743623.htm?eqid=cb48c394000725f6000000026458a34d.
[3] 国家能源局. 关于加快推进能源数字化智能化发展的若干意见[EB/OL]. [2023-06-29]. https://www.gov.cn/zhengce/zhengceku/2023-04/02/content_5749758.htm. National Energy Administration. Some views on accelerating the development of digital intelligence in energy[EB/OL]. [2023-06-29]. https://www.gov.cn/zhengce/zhengceku/2023-04/02/content_5749758.htm.
[4] 袁亮,张平松. 煤矿透明地质模型动态重构的关键技术与路径思考[J]. 煤炭学报,2023,48(1):1-14. YUAN Liang,ZHANG Pingsong. Key technology and path thinking of dynamic reconstruction of mine transparent geological model[J]. Journal of China Coal Society,2023,48(1):1-14.
[5] 董书宁. 煤矿安全高效生产地质保障的新技术新装备[J]. 中国煤炭,2020,46(9):15-23. DONG Shuning. New technology and equipment of geological guarantee for safe and efficient production in coal mine[J]. China Coal,2020,46(9):15-23.
[6] 程建远,石显新. 中国煤炭物探技术的现状与发展[J]. 地球物理学进展,2013,28(4):2024-2032. CHENG Jianyuan,SHI Xianxin. Current status and development of coal geophysical technology in China[J]. Progress in Geophysics,2013,28(4):2024-2032.
[7] 严加永,孟贵祥,吕庆田,等. 高密度电法的进展与展望[J]. 物探与化探,2012,36(4):576-584. YAN Jiayong,MENG Guixiang,LYU Qingtian,et al. The progress and prospect of the electrical resistivity imaging survey[J]. Geophysical and Geochemical Exploration,2012,36(4):576-584.
[8] 程久龙,李飞,彭苏萍,等. 矿井巷道地球物理方法超前探测研究进展与展望[J]. 煤炭学报,2014,39(8):1742-1750. CHENG Jiulong,LI Fei,PENG Suping,et al. Research progress and development direction on advanced detection in mine roadway working face using geophysical methods[J]. Journal of China Coal Society,2014,39(8):1742-1750.
[9] 刘国兴. 电法勘探原理与方法[M]. 北京: 地质出版社, 2005. LIU Guoxing. Principles and methods of electrical prospecting[M]. Beijing: Geology Press, Beijing, 2005.
[10] 中国煤田地质总局. 中国煤田地质勘探史[M]. 北京: 煤炭工业出版社, 1993. China National Administration of Coal Geology.A history of China coal geological exploration[M]. Beijing: China Coal Industry Publishing House, 1993.
[11] 岳建华,李志聃. 矿井直流电法及在煤层底板突水探测中的应用[J]. 中国矿业大学学报,1997,26(1):96-100. YUE Jianhua,LI Zhidan. Mine DC electrical methods and application to coal floor water invasion detecting[J]. Journal of China University of Mining & Technology,1997,26(1):96-100.
[12] 李学军. 煤矿井下定点源梯度法超前探测试验研究[J]. 煤田地质与勘探,1992,20(4):59-63. LI Xuejun. Study and experiment on heading detecting by fixedelectric source gradient method in underground[J]. Coal Geology & Exploration,1992,20(4):59-63.
[13] 岳建华, 刘树才. 矿井直流电法勘探[M]. 徐州: 中国矿业大学出版社, 2000. YUE Jianhua, LIU Shucai. DC electrical exploration in mines[M]. Xuzhou: China University of Mining and Technology Press, 2000.
[14] 刘盛东, 张平松. 分布式并行智能电极电位差信号采集方法和系统: CN1616987[P]. 2005-05-18. LIU Shengdong, ZHANG Pingsong. Collecting method and system for distributive parallel intelligent electrode potential difference signals: CN1616987[P]. 2005-05-18.
[15] 王冰纯,鲁晶津,房哲. 基于伪随机序列的矿井电法监测系统[J]. 煤矿安全,2018,49(12):118-121. WANG Bingchun,LU Jingjin,FANG Zhe. Research on mine electrical monitoring system based on pseudo-random sequence[J]. Safety in Coal Mines,2018,49(12):118-121.
[16] 刘盛东,刘静,戚俊,等. 矿井并行电法技术体系与新进展[J]. 煤炭学报,2019,44(8):2336-2345. LIU Shengdong,LIU Jing,QI Jun,et al. Applied technologies and new advances of parallel electrical method in mining geophysics[J]. Journal of China Coal Society,2019,44(8):2336-2345.
[17] 程建远,王保利,范涛,等. 煤矿地质透明化典型应用场景及关键技术[J]. 煤炭科学技术,2022,50(7):1-12. CHENG Jianyuan,WANG Baoli,FAN Tao,et al. Typical application scenes and key technologies of coal mine geological transparency[J]. Coal Science and Technology,2022,50(7):1-12.
[18] ZHAO Shuanfeng,WEI Mingle,ZHANG Chuanwei,et al. Coal mine inclined shaft advanced detection method and physical model test based on shield cutterhead moving array electrodes[J]. Energies,2019,12(9):1-15.
[19] 张平松,欧元超,李圣林. 我国矿井物探技术及装备的发展现状与思考[J]. 煤炭科学技术,2021,49(7):1-15. ZHANG Pingsong,OU Yuanchao,LI Shenglin. Development quo-status and thinking of mine geophysical prospecting technology and equipment in China[J]. Coal Science and Technology,2021,49(7):1-15.
[20] 曹煜. 并行直流电法成像技术研究[D]. 淮南: 安徽理工大学, 2008. CAO Yu. The imager technology of concurrent electrical meter[D]. Huainan: Anhui University of Science and Technology, 2008.
[21] 张平松,许时昂,郭立全,等. 采场围岩变形与破坏监测技术研究进展及展望[J]. 煤炭科学技术,2020,48(3):14-48. ZHANG Pingsong,XU shi'ang,GUO Liquan,et al. Prospect and progress of deformation and failure monitoring technology of surrounding rock in stope[J]. Coal Science and Technology,2020,48(3):14-48.
[22] 程久龙,于师建. 覆岩变形破坏电阻率响应特征的模拟实验研究[J]. 地球物理学报,2000,43(5):699-706. CHENG Jiulong,YU Shijian. Simulation experiment on the response of resistivity to deformation and failure of overburden[J]. Chinese Journal of Geophysics,2000,43(5):699-706.
[23] 李建楼,刘盛东,张平松,等. 并行网络电法在煤层覆岩破坏监测中的应用[J]. 煤田地质与勘探,2008,36(2):61-64. LI Jianlou,LIU Shengdong,ZHANG Pingsong,et al. Failure dynamic observation of upper covered stratum under mine using parallel network electricity method[J]. Coal Geology & Exploration,2008,36(2):61-64.
[24] 刘树才,刘鑫明,姜志海,等. 煤层底板导水裂隙演化规律的电法探测研究[J]. 岩石力学与工程学报,2009,28(2):348-356. LIU Shucai,LIU Xinming,JIANG Zhihai,et al. Research on electrical prediction for evaluating water conducting fracture zones in coal seam floor[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(2):348-356.
[25] 张平松,胡雄武,刘盛东. 采煤面覆岩破坏动态测试模拟研究[J]. 岩石力学与工程学报,2011,30(1):78-83. ZHANG Pingsong,HU Xiongwu,LIU Shengdong. Study of dynamic detection simulation of overburden failure in model workface[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(1):78-83.
[26] 张平松,胡雄武,吴荣新. 岩层变形与破坏电法测试系统研究[J]. 岩土力学,2012,33(3):952-956. ZHANG Pingsong,HU Xiongwu,WU Rongxin. Study of detection system of distortion and collapsing of top rock by resistivity method in working face[J]. Rock and Soil Mechanics,2012,33(3):952-956.
[27] 施龙青,牛超,翟培合,等. 三维高密度电法在顶板水探测中应用[J]. 地球物理学进展,2013,28(6):3276-3279. SHI Longqing,NIU Chao,ZHAI Peihe,et al. Application of three-dimensional high density resistivity technique in detecting roof water[J]. Progress in Geophysics,2013,28(6):3276-3279.
[28] SHI Longqing,WANG Ying,QIU Mei,et al. Application of three-dimensional high-density resistivity method in roof water advanced detection during working stope mining[J]. Arabian Journal of Geosciences,2019,12(15):464-471. DOI: 10.1007/s12517-019-4586-7
[29] 杨海平,刘盛东,杨彩,等. 煤层顶底板采动破坏同步动态监测电性特征分析[J]. 工程地质学报,2021,29(4):1002-1009. YANG Haiping,LIU Shengdong,YANG Cai,et al. Analysis of electrical characteristics of mining destruction on coal seam roof and floor with simultaneous dynamic monitoring method[J]. Journal of Engineering Geology,2021,29(4):1002-1009.
[30] 鲁晶津. 工作面采动破坏过程电阻率动态响应特征研究[J]. 工矿自动化,2023,49(1):36-45,108. LU Jingjin. Study on dynamic response characteristics of resistivity in mining failure process of working face[J]. Journal of Mine Automation,2023,49(1):36-45,108.
[31] 翟培合,张同德,任科科,等. 基于最小二乘正则化的高密度电法在小港煤矿71502工作面底板中的应用[J]. 中国科技论文,2022,17(1):15-20. ZHAI Peihe,ZHANG Tongde,REN Keke,et al. Application of high density electrical method based on least square regularization in floor of working face 71502 of Xiaogang Coal Mine[J]. China Sciencepaper,2022,17(1):15-20.
[32] 胡雄武,孟当当,张平松,等. 采煤工作面底板水视电阻率全方位探测方法[J]. 煤炭学报,2019,44(8):2369-2376. HU Xiongwu,MENG Dangdang,ZHANG Pingsong,et al. An all-directional detection method of apparent resistivity for water from the floor strata of coal-mining face[J]. Journal of China Coal Society,2019,44(8):2369-2376.
[33] 鲁晶津,李德山,王冰纯. 超大采高工作面顶板电阻率监测可行性试验[J]. 煤田地质与勘探,2019,47(3):186-194. LU Jingjin,LI Deshan,WANG Bingchun. Feasibility test of roof resistivity monitoring for super-high mining face[J]. Coal Geology & Exploration,2019,47(3):186-194.
[34] 温亨聪,刘宝宝,杨海涛. 矿井电法高效顶板探测系统研究与应用[J]. 煤矿安全,2022,53(1):151-155. WEN Hengcong,LIU Baobao,YANG Haitao. Research and application of mine electric method in high efficiency roof detection system[J]. Safety in Coal Mines,2022,53(1):151-155.
[35] 康红普. 我国煤矿巷道围岩控制技术发展70年及展望[J]. 岩石力学与工程学报,2021,40(1):1-30. KANG Hongpu. Seventy years development and prospects of strata control technologies for coal mine roadways in China[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(1):1-30.
[36] 程久龙,王玉和,于师建,等. 巷道掘进中电阻率法超前探测原理与应用[J]. 煤田地质与勘探,2000,28(4):60-62. CHENG Jiulong,WANG Yuhe,YU Shijian,et al. The principle and application of advance surveying in roadway excavation by resistivity method[J]. Coal Geology & Exploration,2000,28(4):60-62.
[37] 刘青雯. 井下电法超前探测方法及其应用[J]. 煤田地质与勘探,2001,29(5):60-62. LIU Qingwen. Underground electrical lead survey method and its application[J]. Coal Geology & Exploration,2001,29(5):60-62.
[38] 黄俊革,王家林,阮百尧. 坑道直流电阻率法超前探测研究[J]. 地球物理学报,2006,49(5):1529-1538. HUANG Junge,WANG Jialin,RUAN Baiyao. A study on advanced detection using DC resistivity method in tunnel[J]. Chinese Journal of Geophysics,2006,49(5):1529-1538.
[39] 胡雄武,张平松,吴荣新,等. 矿井多极供电电阻率法超前探测技术研究[J]. 地球物理学进展,2010,25(5):1709-1715. HU Xiongwu,ZHANG Pingsong,WU Rongxing,et al. Study on the advanced detection technique by multi-electrode direct current resistivity in mines[J]. Progress in Geophysics,2010,25(5):1709-1715.
[40] 阮百尧,邓小康,刘海飞,等. 坑道直流电阻率超前聚焦探测新方法研究[J]. 地球物理学报,2009,52(1):289-296. RUAN Baiyao,DENG Xiaokang,LIU Haifei,et al. Research on a new method of advanced focus detection with DC resistivity in tunnel[J]. Chinese Journal of Geophysics,2009,52(1):289-296.
[41] 韩德品,李丹,程久龙,等. 超前探测灾害性含导水地质构造的直流电法[J]. 煤炭学报,2010,35(4):635-639. HAN Depin,LI Dan,CHENG Jiulong,et al. DC method of advanced detecting disastrous water-conducting or water-bearing geological structures along same layer[J]. Journal of China Coal Society,2010,35(4):635-639.
[42] 周官群,王亚飞,陈兴海,等. 掘进工作面“三角锥”型直流电法超前探测正演研究[J]. 煤炭学报,2022,47(8):3015-3023. ZHOU Guanqun,WANG Yafei,CHEN Xinghai,et al. Research on forward modeling of "triangular cone" type direct current method for heading detection[J]. Journal of China Coal Society,2022,47(8):3015-3023.
[43] 张平松,李永盛,胡雄武. 巷道掘进直流电阻率法超前探测技术应用探讨[J]. 地下空间与工程学报,2013,9(1):135-140. ZHANG Pingsong,LI Yongsheng,HU Xiongwu. Application and discussion of the advanced detection technology with DC resistivity method in tunnel[J]. Chinese Journal of Underground Space and Engineering,2013,9(1):135-140.
[44] 王敏,刘玉,牟义,等. 多装置矿井直流电法巷道超前探测研究及应用[J]. 煤炭学报,2021,46(增刊1):396-405. WANG Min,LIU Yu,MU Yi,et al. Research and application of multi-array mine DC electrical method for road-way advanced detection[J]. Journal of China Coal Society,2021,46(S1):396-405.
[45] 刘洋,吴小平. 巷道超前探测的并行Monte Carlo方法及电阻率各向异性影响[J]. 地球物理学报,2016,59(11):4297-4309. LIU Yang,WU Xiaoping. Parallel Monte Carlo method for advanced detection in tunnel incorporating anisotropic resistivity effect[J]. Chinese Journal of Geophysics,2016,59(11):4297-4309.
[46] 赵栓峰,丁志兵,李凯凯,等. 盾构机掘进煤矿巷道超前探测系统[J]. 煤矿安全,2019,50(2):117-120. ZHAO Shuanfeng,DING Zhibing,LI Kaikai,et al. Advanced detection system for shield tunneling coal roadway[J]. Safety in Coal Mines,2019,50(2):117-120.
[47] 赵栓峰,拜云瑞,黄涛,等. 基于移动阵列电极的盾构超前探测正演响应分析[J]. 煤田地质与勘探,2020,48(1):214-220. ZHAO Shuanfeng,BAI Yunrui,HUANG Tao,et al. Forward response analysis of shield advanced detection with moving array electrode[J]. Coal Geology & Exploration,2020,48(1):214-220.
[48] 王程,鲁晶津. 音频电穿透三维反演在含/导水陷落柱探查中的应用[J]. 工矿自动化,2019,45(8):105-108. WANG Cheng,LU Jingjin. Application of 3D inversion of audio-frequency electric perspective in detection of water-containing/water-conductive collapse column[J]. Industry and Mine Automation,2019,45(8):105-108.
[49] 牟义,杨新亮,李宏杰,等. 采煤工作面水害电法精细探测技术[J]. 中国矿业,2014,23(3):88-92. MU Yi,YANG Xinliang,LI Hongjie,et al. Water disaster fine electrical method detection technology in coal mining working face[J]. China Mining Magazine,2014,23(3):88-92.
[50] 陈继福,赵庆珍. 音频电法透视技术在界沟矿井水害防治工作中的应用[J]. 山西大同大学学报(自然科学版),2020,36(1):56-60. CHEN Jifu,ZHAO Qingzhen. Application of audio electric perspective technology in mine water disaster prevention and cure in Jiegou[J]. Journal of Shanxi Datong University(Natural Science Edition),2020,36(1):56-60.
[51] 曹强. 巷道间电阻率法三维正反演研究[D]. 北京: 中国地质大学(北京), 2015. CAO Qiang. 3-D resistivity forward modeling and inversion between two mine roadways[D]. Beijing: China University of Geosciences, 2015.
[52] 陶冬琴,韩德品. 防爆数字直流电法仪及其应用[J]. 煤田地质与勘探,1994,22(1):54-56. TAO Dongqin,HAN Depin. Explosion proof digital DC electrical meter and its application[J]. Coal Geology & Exploration,1994,22(1):54-56.
[53] 王冰纯. 基于2n伪随机序列的矿井电法监测系统研制[D]. 北京: 煤炭科学研究总院, 2016. WANG Bingchun. Development of mine electrical monitoring system based on 2n pseudorandom sequence[D]. Beijing: China Coal Research Institute, 2016.
[54] 靳德武,赵春虎,段建华,等. 煤层底板水害三维监测与智能预警系统研究[J]. 煤炭学报,2020,45(6):2256-2264. JIN Dewu,ZHAO Chunhu,DUAN Jianhua,et al. Research on 3D monitoring and intelligent early warning system for water hazard of coal seam floor[J]. Journal of China Coal Society,2020,45(6):2256-2264.
-
期刊类型引用(2)
1. 张彦蕾. 基于模糊控制的采煤机自适应截割控制技术研究. 凿岩机械气动工具. 2025(02): 106-108 . 百度学术
2. 牛宝平. 锦界煤矿31302综采面自动化自适应割煤研究. 中国煤炭. 2024(S1): 180-185 . 百度学术
其他类型引用(0)