留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤层液态CO2相变致裂半径预测研究

王长禄 彭然 郑义 李伟 姚海飞

王长禄,彭然,郑义,等. 煤层液态CO2相变致裂半径预测研究[J]. 工矿自动化,2023,49(10):110-117.  doi: 10.13272/j.issn.1671-251x.2023040076
引用本文: 王长禄,彭然,郑义,等. 煤层液态CO2相变致裂半径预测研究[J]. 工矿自动化,2023,49(10):110-117.  doi: 10.13272/j.issn.1671-251x.2023040076
WANG Changlu, PENG Ran, ZHENG Yi, et al. Research on the prediction of liquid CO2 phase transition cracking radius in coal seams[J]. Journal of Mine Automation,2023,49(10):110-117.  doi: 10.13272/j.issn.1671-251x.2023040076
Citation: WANG Changlu, PENG Ran, ZHENG Yi, et al. Research on the prediction of liquid CO2 phase transition cracking radius in coal seams[J]. Journal of Mine Automation,2023,49(10):110-117.  doi: 10.13272/j.issn.1671-251x.2023040076

煤层液态CO2相变致裂半径预测研究

doi: 10.13272/j.issn.1671-251x.2023040076
基金项目: 国家自然科学基金项目(52130409);天地科技股份有限公司科技创新创业资金专项项目(2021-2-TD-MS001)。
详细信息
    作者简介:

    王长禄(1993—),男,辽宁丹东人,硕士,主要研究方向为安全评价及瓦斯灾害防治,E-mail:changlu202303@163.com

  • 中图分类号: TD712

Research on the prediction of liquid CO2 phase transition cracking radius in coal seams

  • 摘要: 预测致裂半径是确定液态CO2相变致裂增透瓦斯抽采技术布孔间距的前提,直接影响瓦斯抽采效果。现有预测方法大多基于单因素。为掌握多因素对液态CO2相变致裂半径的影响规律,有效预测布孔间距,采用ANSYS/LS−DYNA数值模拟软件,结合正交试验,开展了煤层液态CO2相变致裂半径预测研究。数值模拟结果表明:影响液态CO2相变致裂半径的因素主次顺序为地应力>瓦斯压力>煤体坚固性系数;致裂半径随地应力增大而减小,随瓦斯压力和煤体坚固性系数增大而增大,且呈线性关系。对数值模拟结果进行多元回归分析,建立了基于地应力、瓦斯压力及煤体坚固性系数3组不同因素耦合条件下的液态CO2相变致裂半径预测模型。在煤矿现场进行工业性试验,基于预测模型计算结果设置抽采钻孔,采用压力指标法对瓦斯抽采效果进行测试分析,结果表明:液态CO2相变致裂孔两侧观测孔的瓦斯压力随时间增加呈递减趋势,且抽采初期距致裂孔越远,则压力越大,与理论分析及数值模拟结果一致;液态CO2相变有效致裂范围与预测结果基本相符;观测孔瓦斯抽采体积分数较自然抽采孔提高73.4%,瓦斯抽采效率显著提高。

     

  • 图  1  液态CO2相变爆破裂隙发育分布

    Figure  1.  Fracture development distribution by liquid CO2 phase transition blasting

    图  2  液态CO2相变致裂数值模型

    Figure  2.  Numerical model of liquid CO2 phase transition cracking

    图  3  液态CO2相变致裂模拟演化过程

    Figure  3.  Simulated evolution process of liquid CO2 phase transition cracking

    图  4  三因素耦合作用下的致裂效果

    Figure  4.  Cracking effect under three factors coupling

    图  5  各因素对液态CO2相变致裂半径的影响

    Figure  5.  Influence of various factors on liquid CO2 phase transition cracking radius

    图  6  现场工业性试验布孔方式

    Figure  6.  Borehole arrangement in industrial field test

    图  7  观测孔瓦斯压力变化

    Figure  7.  Gas pressure change of observation borehole

    图  8  钻孔瓦斯体积分数对比

    Figure  8.  Gas concentration comparison of different borehole

    表  1  煤体材料参数

    Table  1.   Coal material parameters

    密度/
    (g·cm−3
    弹性模
    量/MPa
    泊松比 抗拉强
    度/MPa
    抗压强
    度/MPa
    黏聚力/
    MPa
    1.54 1.74 0.3 0.84 2.2 2.5
    下载: 导出CSV

    表  2  模拟方案正交设计

    Table  2.   Orthogonal design of simulation scheme

    组号地应力/MPa瓦斯压力/MPa煤体坚固性系数空白列
    160.20.50
    260.30.70
    360.40.80
    480.20.70
    580.30.80
    680.40.50
    7100.20.80
    8100.30.50
    9100.40.70
    下载: 导出CSV

    表  3  致裂半径极差分析

    Table  3.   Range analysis of cracking radius

    指标地应力瓦斯压力煤体坚固性系数空白列
    均值12.5182.1172.1822.234
    均值22.2342.2342.2442.234
    均值31.9502.3502.2752.234
    极差0.5680.2330.0930
    下载: 导出CSV

    表  4  正交设计方差分析

    Table  4.   Variance analysis of orthogonal design

    指标地应力瓦斯压力煤体坚固性系数
    偏差平方和 0.484 0.082 0.013
    自由度 2 2 2
    F比值 3.344 0.566 0.090
    显著度 置信度90% * * *
    置信度95% * * *
    置信度99% * * *
     注:*表示具有较高显著度。
    下载: 导出CSV
  • [1] 陈浮,于昊辰,卞正富,等. 碳中和愿景下煤炭行业发展的危机与应对[J]. 煤炭学报,2021,46(6):1808-1820. doi: 10.13225/j.cnki.jccs.2021.0368

    CHEN Fu,YU Haochen,BIAN Zhengfu,et al. How to handle the crisis of coal industry in China under the vision of carbon neutrality[J]. Journal of China Coal Society,2021,46(6):1808-1820. doi: 10.13225/j.cnki.jccs.2021.0368
    [2] NILSON R H,PROFFER W J,DUFF R E. Modelling of gas-driven fractures induced by propellant combustion within a borehole[J]. International Journal of Rock Mechanic and Mining Sciences & Geomechanics Abstracts,1985,22(1):3-19.
    [3] 黄荣樽. 水力压裂裂缝的起裂和扩展[J]. 石油勘探与开发,1981,46(5):62-74.

    HUANG Rongzun. Cracking and propagation of hydraulic fracturing fractures[J]. Petroleum Expoloration and Development,1981,46(5):62-74.
    [4] 文虎,李珍宝,王振平,等. 煤层注液态CO2压裂增透过程及裂隙扩展特征试验[J]. 煤炭学报,2016,41(11):2793-2799.

    WEN Hu,LI Zhenbao,WANG Zhenping,et al. Experiment on the liquid CO2 fracturing process for increasing permeability and the characteristics of crack propagation in coal seam[J]. Journal of China Coal Society,2016,41(11):2793-2799.
    [5] 张东明,白鑫,尹光志,等. 低渗煤层液态CO2相变射孔破岩及裂隙扩展力学机理[J]. 煤炭学报,2018,43(11):3154-3168.

    ZHANG Dongming,BAI Xin,YIN Guangzhi,et al. Mechanism of breaking and fracture expansion of liquid CO2 phase change jet fracturing in low-permeability coal seam[J]. Journal of China Coal Society,2018,43(11):3154-3168.
    [6] 董庆祥,王兆丰,韩亚北,等. 液态CO2相变致裂的TNT当量研究[J]. 中国安全科学学报,2014,24(11):84-88.

    DONG Qingxiang,WANG Zhaofeng,HAN Yabei,et al. Research on TNT equivalent of liquid CO2 phase-transition fracturing[J]. China Safety Science Journal,2014,24(11):84-88.
    [7] 周西华,门金龙,宋东平,等. 煤层液态CO2爆破增透促抽瓦斯技术研究[J]. 中国安全科学学报,2015,25(2):60-65.

    ZHOU Xihua,MEN Jinlong,SONG Dongping,et al. Research on increasing coal seam permeability and promoting gas drainage with liquid CO2 blasting[J]. China Safety Science Journal,2015,25(2):60-65.
    [8] 赵宝友,王海东. 煤体坚固性系数和瓦斯压力对煤层深孔爆破增透的影响[J]. 爆破,2014,31(1):25-31. doi: 10.3963/j.issn.1001-487X.2014.01.006

    ZHAO Baoyou,WANG Haidong. Impact of coal strength coefficient and methane gas pressure on permeability enhancement of coal seam induced by long-hole blasting technology[J]. Blasting,2014,31(1):25-31. doi: 10.3963/j.issn.1001-487X.2014.01.006
    [9] 孙可明,辛利伟,吴迪. 超临界CO2气爆煤体致裂机理实验研究[J]. 爆炸与冲击,2018,38(2):302-308. doi: 10.11883/bzycj-2016-0230

    SUN Keming,XIN Liwei,WU Di. Experimental study on fracture mechanism of coal caused by supercritical CO2 explosion[J]. Explosion and Shock Waves,2018,38(2):302-308. doi: 10.11883/bzycj-2016-0230
    [10] 贾进章,李斌,王东明. 煤层液态CO2相变致裂半径范围的影响因素研究[J]. 中国安全科学学报,2021,31(4):57-63.

    JIA Jinzhang,LI Bin,WANG Dongming. Study on influencing factors of cracking radius range caused by liquid CO2 phase transition in coal seams[J]. China Safety Science Journal,2021,31(4):57-63.
    [11] 袁海梁,刘孝义,陈少波,等. 基于SPH算法的CO2相变破岩数值模拟[J]. 工程爆破,2023,29(1):62-68.

    YUAN Hailiang,LIU Xiaoyi,CHEN Shaobo,et al. Numerical simulation of CO2 phase change rock breaking based on SPH algorithm[J]. Engineering Blasting,2023,29(1):62-68.
    [12] 李连崇,赵瑜. 基于双应变胡克模型的岩石非线性弹性行为分析[J]. 岩石力学与工程学报,2012,31(10):2119-2126. doi: 10.3969/j.issn.1000-6915.2012.10.018

    LI Lianchong,ZHAO Yu. Investigation on nonlinear elastic behaviour of rocks based on a two-part Hooke's model[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(10):2119-2126. doi: 10.3969/j.issn.1000-6915.2012.10.018
    [13] 刘保县,黄敬林,王泽云,等. 单轴压缩煤岩损伤演化及声发射特性研究[J]. 岩石力学与工程学报,2009,28(增刊1):3234-3238.

    LIU Baoxian,HUANG Jinglin,WANG Zeyun,et al. Study on damage evolution and acoustic emission character of coal-rock under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(S1):3234-3238.
    [14] HAO Yan,ZHANG Jixiong,ZHOU Nan,et al. Staged numerical simulations of supercritical CO2 fracturing of coal seams based on the extended finite element method[J]. Journal of Engineering,2019,21(3):275-283.
    [15] 高金明,曾丹,孙磊,等. 新型发射药爆炸TNT当量系数的实验研究[J]. 爆炸与冲击,2021,41(10):45-53.

    GAO Jinming,ZENG Dan,SUN Lei,et al. Experimental study on TNT equivalent coefficients for two new kinds of propellants[J]. Explosion and Shock Waves,2021,41(10):45-53.
    [16] YIN Siyu,WU Shaopeng,LIU Mingbo,et al. Study on influencing factors of unconfined penetration test based on orthogonal design[J]. Arabian Journal of Geosciences,2021,14(2):2-12.
    [17] 安朝峰,李树刚,林海飞,等. 煤吸附甲烷的影响因素敏感性正交试验[J]. 煤矿安全,2015,46(2):1-4. doi: 10.13347/j.cnki.mkaq.2015.02.001

    AN Zhaofeng,LI Shugang,LIN Haifei,et al. Orthogonal experiment on sensitivity of impact factors in coal adsorbing methane[J]. Safety in Coal Mines,2015,46(2):1-4. doi: 10.13347/j.cnki.mkaq.2015.02.001
    [18] 刘立忠,郭娜,马程程,等. 基于正交试验法的低温SCR锰基催化剂制备参数优化[J]. 安全与环境学报,2013,13(5):72-76.

    LIU Lizhong,GUO Na,MA Chengcheng,et al. Approach to optimizing the preparation parameters of SCR low temperature catalyst based on manganese through orthogonal experiment[J]. Journal of Safety and Environment,2013,13(5):72-76.
    [19] 郭军,金彦,王帆,等. 基于Logistic回归分析的煤自燃多级预警方法研究[J]. 中国安全生产科学技术,2022,18(2):88-93.

    GUO Jun,JIN Yan,WANG Fan,et al. Research on multi-level warning method of coal spontaneous combustion based on Logistic regression analysis[J]. Journal of Safety Science and Technology,2022,18(2):88-93.
    [20] 宁奕冰,唐辉明,张勃成,等. 基于正交设计的岩石相似材料配比研究及底摩擦物理模型试验应用[J]. 岩土力学,2020,41(6):2009-2020.

    NING Yibing,TANG Huiming,ZHANG Bocheng,et al. Investigation of the rock similar material proportion based on orthogonal design and its application in base friction physical model tests[J]. Rock and Soil Mechanics,2020,41(6):2009-2020.
    [21] 邹永洺. 基于示踪气体法的覆岩“竖三带”测定[J]. 煤矿安全,2019,50(5):7-10. doi: 10.13347/j.cnki.mkaq.2019.05.002

    ZOU Yongming. "Vertical three zones" determination of overburden based on tracer gas method[J]. Safety in Coal Mines,2019,50(5):7-10. doi: 10.13347/j.cnki.mkaq.2019.05.002
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  114
  • HTML全文浏览量:  39
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-24
  • 修回日期:  2023-10-14
  • 网络出版日期:  2023-10-25

目录

    /

    返回文章
    返回