基于惯性测量单元的刮板输送机形态监测

魏东, 李祖旭, 司垒, 谭超, 王忠宾, 梁斌, 肖俊鹏

魏东,李祖旭,司垒,等. 基于惯性测量单元的刮板输送机形态监测[J]. 工矿自动化,2023,49(8):37-52, 80. DOI: 10.13272/j.issn.1671-251x.2023010003
引用本文: 魏东,李祖旭,司垒,等. 基于惯性测量单元的刮板输送机形态监测[J]. 工矿自动化,2023,49(8):37-52, 80. DOI: 10.13272/j.issn.1671-251x.2023010003
WEI Dong, LI Zuxu, SI Lei, et al. Shape monitoring of scraper conveyor based on inertial measurement unit[J]. Journal of Mine Automation,2023,49(8):37-52, 80. DOI: 10.13272/j.issn.1671-251x.2023010003
Citation: WEI Dong, LI Zuxu, SI Lei, et al. Shape monitoring of scraper conveyor based on inertial measurement unit[J]. Journal of Mine Automation,2023,49(8):37-52, 80. DOI: 10.13272/j.issn.1671-251x.2023010003

基于惯性测量单元的刮板输送机形态监测

基金项目: 中央高校基本科研业务费专项资金资助项目(2022QN1043)。
详细信息
    作者简介:

    魏东(1992—),男,辽宁阜新人,讲师,博士,研究方向为矿山装备智能化、煤矿人员安全保护,E-mail:weidongcmee@cumt.edu.cn

  • 中图分类号: TD634.2

Shape monitoring of scraper conveyor based on inertial measurement unit

  • 摘要: 刮板输送机作为综采工作面的核心运输装备,准确感知其形态是提升其带载能力、缓解传动冲击、改善综采工作面直线度的重要前提。目前常用的刮板输送机形态间接测量方法难以准确表征其形态,导致测量模型误差较大。针对该问题,采用惯性测量单元直接测量刮板输送机中部槽原始位姿信息,实现刮板输送机形态数据的准确获取。采用融合Heursure阈值规则和新阈值函数的小波阈值去噪方法滤除中部槽运动加速度信号中的噪声干扰,在此基础上分析了中部槽运动特征,设计了基于随机森林的中部槽运动状态识别模型,根据运动状态识别结果采用不同的策略更新中部槽位置,减小了随时间累计的IMU数据误差,提升了IMU位置解算精度。设计了改进哈里斯鹰优化(HHO)算法优化无迹卡尔曼滤波(UKF)进行中部槽姿态解算,通过实验验证了该方法解算的姿态角满足中部槽姿态测量要求。搭建了刮板输送机形态监测实验平台,对基于运动状态识别和改进HHO优化UKF的刮板输送机形态解算方法进行实验验证,结果表明:刮板输送机进行单次推溜且步距为250 mm时,由10节中部槽组成的刮板输送机在底板水平工况下,XY轴方向上位移的最大累计误差分别为6.4,8.4 mm,Z轴方向上位移始终保持不变,俯仰角、横滚角和航向角的最大累计误差分别为−0.148,−0.035,0.457º;在底板起伏工况下,XYZ轴方向上位移的最大累计误差分别为6.6,11.5,6.9 mm,俯仰角、横滚角和航向角的最大累计误差分别为−0.540,−0.157,0.817º。该方法可有效抑制累计误差,降低测量误差,实现刮板输送机形态的准确感知。
    Abstract: Scraper conveyor is the core transportation equipment of the fully mechanized working face. Accurately perceiving its form is an important prerequisite to enhance its carrying capacity, alleviate the transmission impact, and improve the straightness of fully mechanized working face. The commonly used indirect measurement methods for the shape of scraper conveyors are difficult to accurately characterize their shape, resulting in significant measurement model errors. To address this issue, an inertial measurement unit is used to directly measure the original pose information of the middle trough of scraper conveyor, achieving accurate acquisition of the shape data of scraper conveyor. A wavelet thresholding denoising method that combines Heursure threshold rules and a new threshold function is used to filter out noise interference in the acceleration signal of the middle trough. Based on this, the motion features of the middle trough are analyzed, and a middle trough motion state recognition model based on random forest algorithm is designed. Based on the motion state recognition results, different strategies are used to update the position of the middle trough. It reduces the accumulated IMU data error over time and improves the precision of IMU position calculation. The improved Harris hawk optimization (HHO) algorithm unscented Kalman filter (UKF) is designed for middle trough attitude calculation. It is verified through experiments that the attitude angle calculated by this method meets the requirements of middle trough attitude measurement. The experimental platform for shape monitoring of scraper conveyors is constructed. It conducts experimental verification on the shape calculation method of scraper conveyors based on motion state recognition and improved HHO optimized UKF. The results show that when the scraper conveyor performs a single sliding with a step distance of 250 mm, the maximum cumulative errors of displacement in the X and Y directions of the scraper conveyor composed of 10 middle troughs are 6.4 mm and 8.4 mm respectively under the horizontal working condition of bottom plate. It remains unchanged in the Z direction. The maximum cumulative errors of pitch angle, roll angle, and heading angle are −0.148°, −0.035°, and 0.457° respectively. Under the working condition of floor undulation, the maximum cumulative errors of displacement in the X, Y, and Z directions are 6.6 mm, 11.5 mm, and 6.9 mm respectively. The maximum cumulative errors of pitch angle, roll angle, and heading angle are −0.540°, −0.157°, and 0.817° respectively. This method can effectively suppress cumulative errors, reduce measurement errors, and achieve accurate perception of the shape of the scraper conveyor.
  • 图  1   中部槽位姿测量坐标系

    Figure  1.   Coordinate system for position and attitude measurement of middle trough

    图  2   刮板输送机形态测量坐标系

    Figure  2.   Coordinate system for shape measurement of scraper conveyor

    图  3   中部槽Y轴方向运动信息

    Figure  3.   Motion information of middle trough in Y-axis direction

    图  4   样本特征值

    Figure  4.   Eigenvalues of samples

    图  5   改进前后的收敛因子和逃逸能量对比

    Figure  5.   Comparison of convergence factor and escape energy before and after improvement

    图  6   基于改进HHO优化UKF的中部槽姿态解算流程

    Figure  6.   Flow of attitude calculation of middle trough based on UKF optimized by improved HHO

    图  7   中部槽姿态解算实验装置

    Figure  7.   Experimental equipment of attitude calculation of middle trough

    图  8   中部槽模型姿态解算实验结果

    Figure  8.   Experimental results of attitude calculation of middle trough model

    图  9   刮板输送机形态监测实验方案

    Figure  9.   Experimental scheme for shape monitoring of scrapper conveyor

    图  10   刮板输送机形态监测实验平台

    Figure  10.   Experimental platform for shape monitoring of scrapper conveyor

    图  11   底板水平工况下刮板输送机形态监测实验

    Figure  11.   Shape monitoring experiment of scrapper conveyor under the condition of horizontal floor

    图  12   底板水平工况下中部槽测量点位置

    Figure  12.   Measuring point position of middle trough under the condition of horizontal floor

    图  13   底板水平工况下测量点位置在XOY平面和XOZ平面的投影及误差

    Figure  13.   Projection and error of measuring point position on XOY and XOZ plane under the condition of horizontal floor

    图  14   底板水平工况下中部槽初始姿态角

    Figure  14.   The initial attitude angle of middle trough under the condition of horizontal floor

    图  15   底板水平工况下中部槽终止姿态角

    Figure  15.   The final attitude angle of middle trough under the condition of horizontal floor

    图  16   底板起伏工况下刮板输送机形态监测实验

    Figure  16.   Shape monitoring experiment of scrapper conveyor under the condition of undulating floor

    图  17   底板起伏工况下中部槽测量点位置

    Figure  17.   Measuring points position of middle trough under the condition of undulating floor

    图  18   底板起伏工况下测量点位置XOY平面和XOZ平面投影

    Figure  18.   Projection of measuring point position on XOY and XOZ plane under the condition of undulating floor

    图  19   测量点三轴方向的位置累计误差

    Figure  19.   Accumulated position error of measuring point in the three-axis direction

    图  20   底板起伏工况下中部槽初始姿态角

    Figure  20.   The initial attitude angles of middle trough under the condition of undulating floor

    图  21   底板起伏工况下中部槽终止姿态角

    Figure  21.   The final attitude angle of middle trough under the condition of undulating floor

    表  1   样本特征数据

    Table  1   Feature data of samples

    序号F3F4F7F8
    10.696 40.652 90.046 00.409 7
    20.684 00.650 60.054 80.390 5
    1 0010.826 7−0.248 50.342 70.770 5
    2 0000.474 0−0.678 30.137 90.287 7
    下载: 导出CSV

    表  2   中部槽运动状态识别结果

    Table  2   Recognition results of motion states of middle trough

    序号状态准确率/%
    1S1100
    2S296.4
    3S3100
    4S497.9
    下载: 导出CSV

    表  3   4种姿态解算算法的误差比较

    Table  3   Error comparison of four attitude calculation algorithms (°)

    指标EKFUKFHHO优化UKF改进HHO优化UKF
    航向角最大误差0.4660.4370.4040.193
    平均绝对值误差0.2510.1980.1650.057
    横滚角最大误差−0.008−0.005−0.003−0.003
    平均绝对值误差0.0025.499×10−46.528×10−45.188×10−4
    俯仰角最大误差0.0250.0120.0110.010
    平均绝对值误差0.1030.0050.0015.805×10−4
    下载: 导出CSV
  • [1] 司垒,李嘉豪,谭超,等. 矿用刮板输送机垂直冲击下负载电流特性研究[J]. 煤炭科学技术,2023,51(2):400-411. DOI: 10.13199/j.cnki.cst.2021-1140

    SI Lei,LI Jiahao,TAN Chao,et al. Study on load current characteristics of scraper conveyor under vertical impact[J]. Coal Science and Technology,2023,51(2):400-411. DOI: 10.13199/j.cnki.cst.2021-1140

    [2] 徐亮. 我国煤炭开发建设现状与“十四五”展望[J]. 中国煤炭,2021,47(3):44-48. DOI: 10.3969/j.issn.1006-530X.2021.03.006

    XU Liang. The present situation and expectation of coal exploitation and construction in China's 14th Five-Year Plan period[J]. China Coal,2021,47(3):44-48. DOI: 10.3969/j.issn.1006-530X.2021.03.006

    [3] 毛君. 刮板输送机动力学行为分析与控制理论研究[D]. 阜新: 辽宁工程技术大学, 2006.

    MAO Jun. Dynamical behavior analysis and control theory research of scraper conveyor[D]. Fuxin: Liaoning Technical University, 2006.

    [4] 王学文,李素华,谢嘉成,等. 机器人运动学与时序预测融合驱动的刮板输送机调直方法[J]. 煤炭学报,2021,46(2):652-666. DOI: 10.13225/j.cnki.jccs.XR20.1897

    WANG Xuewen,LI Suhua,XIE Jiacheng,et al. Straightening method of scraper conveyor driven by robot kinematics and time series prediction[J]. Journal of China Coal Society,2021,46(2):652-666. DOI: 10.13225/j.cnki.jccs.XR20.1897

    [5] 刘婷. 刮板输送机S弯区域水平弯曲角优化关键技术研究[D]. 徐州: 中国矿业大学, 2019.

    LIU Ting. Research on key technologies for optimizing horizontal bending angle in S-bending area of scraper conveyor[D]. Xuzhou: China University of Mining and Technology, 2019.

    [6] 乔春光,王学文,谢嘉成,等. 刮板输送机水平面形态检测方法[J]. 工矿自动化,2018,44(8):52-57. DOI: 10.13272/j.issn.1671-251x.2018060004

    QIAO Chunguang,WANG Xuewen,XIE Jiacheng,et al. Horizontal shape detection method for scraper conveyor[J]. Industry and Mine Automation,2018,44(8):52-57. DOI: 10.13272/j.issn.1671-251x.2018060004

    [7]

    KELLY M S,HAINSWORTH D W. The landmark longwall automation project[J]. Acarp Project,2005,1:1-7.

    [8]

    REID D C, HAINSWORTH D W, RALSTON J C, et al. Shearer guidance: a major advance in longwall mining[C]. The 4th International Conference on Field and Service Robotics, 2003: 469-476.

    [9]

    RALSTON J C,REID D C,DUNN M T,et al. Longwall automation:delivering enabling technology to achieve safer and more productive underground mining[J]. International Journal of Mining Science and Technology,2015,25(6):865-876. DOI: 10.1016/j.ijmst.2015.09.001

    [10] 乔春光,王学文,谢嘉成,等. 基于采煤机运行轨迹的刮板输送机竖直面形态解算方法[J]. 工程设计学报,2018,25(5):495-502. DOI: 10.3785/j.issn.1006-754X.2018.05.001

    QIAO Chunguang,WANG Xuewen,XIE Jiacheng,et al. Vertical plane shape calculation method of scraper conveyor based on running track of shearer[J]. Chinese Journal of Engineering Design,2018,25(5):495-502. DOI: 10.3785/j.issn.1006-754X.2018.05.001

    [11] 刘旭,王世博,韩子晨,等. 刮板输送机调直方法研究[J]. 煤矿机械,2020,41(6):54-57. DOI: 10.13436/j.mkjx.202006018

    LIU Xu,WANG Shibo,HAN Zichen,et al. Study on face alignment method of scraper conveyor[J]. Coal Mine Machinery,2020,41(6):54-57. DOI: 10.13436/j.mkjx.202006018

    [12] 李宁. 智能工作面中刮板输送机直线度感知技术[J]. 机电工程技术,2021,50(3):186-188. DOI: 10.3969/j.issn.1009-9492.2021.03.051

    LI Ning. Straightness sensing technology of scraper conveyor of intelligent face[J]. Mechanical & Electrical Engineering Technology,2021,50(3):186-188. DOI: 10.3969/j.issn.1009-9492.2021.03.051

    [13] 王超,李威,杨海,等. 基于航位推测的刮板输送机形态检测研究[J]. 煤炭学报,2017,42(8):2173-2180. DOI: 10.13225/j.cnki.jccs.2016.1642

    WANG Chao,LI Wei,YANG Hai,et al. Scraper conveyor shape detection based on dead reckoning[J]. Journal of China Coal Society,2017,42(8):2173-2180. DOI: 10.13225/j.cnki.jccs.2016.1642

    [14] 权志桥. 智能工作面刮板输送机直线度FBG感知研究[D]. 徐州: 中国矿业大学, 2021.

    QUAN Zhiqiao. Research on straightness FBG perception of scraper conveyor in intelligent working face[D]. Xuzhou: China University of Mining and Technology, 2021.

    [15] 刘鹏坤. 基于视觉测量的综采工作面直线度控制研究[D]. 北京: 中国矿业大学(北京), 2020.

    LIU Pengkun. Research on straightness control of fully mechanized coal face based on vision measurement[D]. Beijing: China University of Mining and Technology-Beijing, 2020.

    [16]

    DONOHO D L,JOHNSTONE I M. Adapting to unknown smoothness via wavelet shrinkage[J]. Journal of the American Statistical Association,1995,90(432):1200-1224. DOI: 10.1080/01621459.1995.10476626

    [17]

    BREIMAN L. Random forests[J]. Machine Learning,2001,45(1):5-32. DOI: 10.1023/A:1010933404324

    [18]

    BREIMAN L. Bagging predictors[J]. Machine Learning,1996,24(2):123-140.

    [19]

    JULIER S,UHLMANN J K. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE,2004,92(3):401-422. DOI: 10.1109/JPROC.2003.823141

    [20] 闫小龙,陈国光,田晓丽. 两步快速可重构无迹卡尔曼滤波算法测量导弹滚转角[J]. 仪器仪表学报,2018,39(6):140-147. DOI: 10.19650/j.cnki.cjsi.J1803312

    YAN Xiaolong,CHEN Guoguang,TIAN Xiaoli. Two-step fast reconfigurable unscented Kalman filter algorithm for measurement of missile rolling angle[J]. Chinese Journal of Scientific Instrument,2018,39(6):140-147. DOI: 10.19650/j.cnki.cjsi.J1803312

    [21]

    HEIDARI A A,MIRJALILI S,FARIS H,et al. Harris hawks optimization:algorithm and applications[J]. Future Generation Computer Systems,2019,97:849-872. DOI: 10.1016/j.future.2019.02.028

    [22] 翟光,王妍欣,孙一勇. 基于低轨星网的多目标协同跟踪滤波技术[J]. 系统工程与电子技术,2022,44(6):1957-1967. DOI: 10.12305/j.issn.1001-506X.2022.06.23

    ZHAI Guang,WANG Yanxin,SUN Yiyong. Cooperative tracking filtering technology of multi-target based on low orbit satellite constellation[J]. Systems Engineering and Electronics,2022,44(6):1957-1967. DOI: 10.12305/j.issn.1001-506X.2022.06.23

    [23] 汤安迪,韩统,徐登武,等. 混沌精英哈里斯鹰优化算法[J]. 计算机应用,2021,41(8):2265-2272. DOI: 10.11772/j.issn.1001-9081.2020101610

    TANG Andi,HAN Tong,XU Dengwu,et al. Chaotic elite Harris hawks optimization algorithm[J]. Journal of Computer Applications,2021,41(8):2265-2272. DOI: 10.11772/j.issn.1001-9081.2020101610

  • 期刊类型引用(4)

    1. 张尚然. 基于机器视觉的提升机钢丝绳抖动超差检测研究. 承德石油高等专科学校学报. 2024(01): 55-58+76 . 百度学术
    2. 方新秋,冯豪天,梁敏富,陈宁宁,吴刚,宋扬. 煤矿智能化开采光纤传感关键技术体系. 工矿自动化. 2023(06): 78-87 . 本站查看
    3. 潘莹,王君. 数据挖掘的光纤光栅传感器复用解调技术. 激光杂志. 2020(10): 187-191 . 百度学术
    4. 高雪. 基于MSP430的提升机钢丝绳状态在线监测系统设计. 煤矿机械. 2019(07): 24-26 . 百度学术

    其他类型引用(14)

图(21)  /  表(3)
计量
  • 文章访问数:  243
  • HTML全文浏览量:  66
  • PDF下载量:  44
  • 被引次数: 18
出版历程
  • 收稿日期:  2022-12-31
  • 修回日期:  2023-08-09
  • 网络出版日期:  2023-09-03
  • 刊出日期:  2023-08-30

目录

    /

    返回文章
    返回