覆岩载荷扰动下平硐围岩变形分析及支护优化

柴敬, 刘泓瑞, 张丁丁, 刘永亮, 韩志成, 田志诚, 张锐新

柴敬,刘泓瑞,张丁丁,等. 覆岩载荷扰动下平硐围岩变形分析及支护优化[J]. 工矿自动化,2023,49(3):13-22. DOI: 10.13272/j.issn.1671-251x.2022090020
引用本文: 柴敬,刘泓瑞,张丁丁,等. 覆岩载荷扰动下平硐围岩变形分析及支护优化[J]. 工矿自动化,2023,49(3):13-22. DOI: 10.13272/j.issn.1671-251x.2022090020
CHAI Jing, LIU Hongrui, ZHANG Dingding, et al. Deformation analysis and support optimization of adit surrounding rock under overburden load disturbance[J]. Journal of Mine Automation,2023,49(3):13-22. DOI: 10.13272/j.issn.1671-251x.2022090020
Citation: CHAI Jing, LIU Hongrui, ZHANG Dingding, et al. Deformation analysis and support optimization of adit surrounding rock under overburden load disturbance[J]. Journal of Mine Automation,2023,49(3):13-22. DOI: 10.13272/j.issn.1671-251x.2022090020

覆岩载荷扰动下平硐围岩变形分析及支护优化

基金项目: 国家自然科学基金资助项目(41027002)。
详细信息
    作者简介:

    柴敬(1964—),男,宁夏平罗人,教授,主要从事采矿工程、岩石力学及光纤传感方面的研究工作,E-mail:chaij@xust.edu.cn

    通讯作者:

    刘泓瑞(1997—),男,四川广元人,硕士研究生,研究方向为采矿工程、光纤传感,E-mail:306731253@qq.com

  • 中图分类号: TD32

Deformation analysis and support optimization of adit surrounding rock under overburden load disturbance

  • 摘要: 传统的收敛仪、三维激光扫描等矿山巷道围岩变形监测技术无法满足复杂工程全面监测需求,实时及自动化监测程度低,且不具备长距离、高精度和大面积监测能力,而现有光纤传感技术仅针对巷道围岩的单一参量进行监测,无法全面分析巷道围岩稳定状况。以某煤矿主平硐为工程背景,采用数值模拟研究了平硐上方填土前后的围岩稳定性,结果表明:填土工程导致平硐两帮围岩支承压力升高,且呈不对称分布;顶板最大下沉量由填土前的8.3 mm增至22.1 mm,最大底鼓量由4.0 mm增至8.5 mm,两帮移近量最大增幅为16.2 mm;围岩变形量与支承压力对应性较强,呈现随平硐上方填土厚度增大而增大的特征。采用光纤布拉格光栅(FBG)传感器构建了平硐围岩变形监测系统,在平硐断面设置FBG传感器监测平硐拱顶裂缝张开度、顶底板及两帮变形量、断面应力应变等,通过实时光谱图分析围岩局部变形情况,结果表明平硐在现有料石砌碹支护状态下,受上覆载荷扰动影响,顶板受压明显,顶板最大下沉量约为30 mm,形成约2 mm宽的裂缝,且监测结果与数值模拟、现场观测结果相符,验证了基于FBG的平硐围岩稳定性监测方法的有效性。根据监测结果,针对平硐支护薄弱处提出了锚杆+T型钢板的补强支护方案,通过数值模拟对其支护效果进行验证,结果表明优化支护方案后,在覆岩载荷扰动下平硐顶板最大下沉量为11.3 mm,两帮最大移近量为12.04 mm,围岩变形量平均降幅达48.8%,提高了围岩稳定性。
    Abstract: The traditional convergence instrument, 3D laser scanning and other monitoring technologies for the deformation of surrounding rock in the mine roadway can not meet the comprehensive monitoring requirements of complex projects. The technologies have low real-time and automatic monitoring degree, and do not have the capability of long-distance, high-precision and large-area monitoring. The existing optical fiber sensing technology only monitors the single parameter of the surrounding rock in the roadway. It can not comprehensively analyze the stability of the surrounding rock in the roadway. Taking the main adit of a coal mine as the engineering background, the stability of surrounding rock before and after the filling above the adit is studied by numerical simulation. The results show that the filling engineering causes the bearing pressure of surrounding rock on both sides of the adit to rise with asymmetric distribution. The maximum subsidence of the top plate increases from 8.3 mm before filling to 22.1 mm. The maximum floor heave increases from 4.0 mm to 8.5 mm. The maximum increase of the displacement of the two sides is 16.2 mm. The deformation of the surrounding rock corresponds strongly to the bearing pressure, which increases with the thickness of the filling above the adit. The fiber Bragg grating (FBG) sensor is used to construct the adit surrounding rock deformation monitoring system. The FBG sensor is set at the adit section to monitor the opening of the adit arch crown crack, the deformation of the roof, floor and both sides, and the stress and strain of the section. The local deformation of the surrounding rock is analyzed through the real-time spectrum. The results show that the adit roof is obviously under pressure under the influence of the disturbance of the overburden load under the existing condition of stone masonry arch support. The maximum subsidence of the roof is about 30 mm, forming a crack about 2 mm wide. The monitoring results are consistent with the numerical simulation and field observation results. The result verifies the effectiveness of the FBG-based adit surrounding rock stability monitoring method. According to the monitoring results, the reinforcement support scheme of bolt+T-shaped steel plate is proposed for the weak part of the adit support. The support effect is verified by numerical simulation. The results show that after the optimized support scheme, the maximum subsidence of the adit roof under the disturbance of overburden load is 11.3 mm. The maximum displacement of the two sides is 12.04 mm, and the average reduction of the surrounding rock deformation is 48.8%. The scheme improves the stability of the surrounding rock.
  • 图  1   主平硐轴线剖面及平面

    Figure  1.   Axis profile and plan of main adit

    图  2   填土工程断面

    Figure  2.   Cross-section of filling engineering

    图  3   平硐围岩稳定性数值计算模型

    Figure  3.   Numerical calculation model of adit surrounding rock stability

    图  4   平硐围岩支承压力分布

    Figure  4.   Abutment pressure distribution of adit surrounding rock

    图  5   现支护条件下平硐围岩变形量

    Figure  5.   Deformation value of adit surrounding rock under existing supporting condition

    图  6   基于FBG的平硐围岩变形监测系统

    Figure  6.   Monitoring system of adit surrounding rock deformation based on fiber Bragg grating(FBG)

    图  7   1号断面FBG位移计监测精度分析

    Figure  7.   Monitoring precision analysis of FBG displacement meter in No.1 section

    图  8   FBG表面应变计监测值

    Figure  8.   Monitoring value of FBG surface strain gauge

    图  9   FBG位移计监测值

    Figure  9.   Monitoring value of FBG displacement meters

    图  10   平硐裂缝

    Figure  10.   Adit cracks

    图  11   FBG土压力计监测值

    Figure  11.   Monitoring value of FBG soil pressure meters

    图  12   FBG移近量传感器监测值

    Figure  12.   Monitoring value of FBG proximity sensors

    图  13   平硐支护优化方案

    Figure  13.   Optimized adit support scheme

    图  14   平硐围岩稳定性数值模拟结果

    Figure  14.   Numerical simulation results of adit surrounding rock stability

    图  15   平硐围岩变形量

    Figure  15.   Deformation value of adit surrounding rock

    表  1   平硐围岩稳定性监测量

    Table  1   Monitoring parameters of adit surrounding rock stability

    监测量传感器类型监测内容
    断面应力、应变FBG表面应变计巷道表面应变
    拱顶裂缝张开度FBG位移计拱顶裂缝张开度
    支护结构内部应力FBG土压力计平硐支护结构受力及变形情况
    顶底板及两帮变形量FBG移近量传感器顶底板及两帮位移变化
    下载: 导出CSV

    表  2   FBG传感器布置位置

    Table  2   Arranging locations of FBG sensors

    传感器类型传感器位置
    FBG表面应变计平硐顶底板、两帮和肩部
    FBG位移计平硐拱顶中央
    FBG土压力计平硐两帮拱脚
    FBG移近量传感器平硐顶底板和两帮
    下载: 导出CSV

    表  3   各断面FBG位移计监测精度范围

    Table  3   Monitoring precision range of FBG displacement meter in each section

    断面编号传感器位置零点值/mm波动范围/mm标定值/mm
    1靠近平硐口−0.145 7−0.241 8~0.142 6±1
    靠近大巷−0.009 8−0.410 7~0.377 7
    2靠近平硐口−0.056 5−0.193 8~0.306 8
    3靠近平硐口−0.134 8−0.209 1~0.183 9
    4靠近平硐口−0.085 7−0.104 9~0.133 4
    靠近大巷0.005 3−0.150 5~0.236 8
    下载: 导出CSV

    表  4   FBG传感器重复测试精度

    Table  4   Repetitive test precision of FBG sensors

    传感器类型理论精度重复测试精度
    FBG表面应变计±4 μɛ±50 μɛ
    FBG位移计±1 mm±1 mm
    FBG土压力计±0.01 MPa±0.2 MPa
    FBG移近量传感器±2 mm±12 mm
    下载: 导出CSV
  • [1] 张桂生,毛江鸿,何勇,等. 基于BOTDA的隧道变形监测技术研究[J]. 公路交通科技(应用技术版),2009,5(8):190-192.

    ZHANG Guisheng,MAO Jianghong,HE Yong,et al. Research on tunnel deformation monitoring technology based on BOTDA[J]. Highway Traffic Technology(Applied Technology Edition ),2009,5(8):190-192.

    [2] 柴敬,张丁丁,李毅. 光纤传感技术在岩土与地质工程中的应用研究进展[J]. 建筑科学与工程学报,2015,32(3):28-37. DOI: 10.3969/j.issn.1673-2049.2015.03.005

    CHAI Jing,ZHANG Dingding,LI Yi. Research progress of optical fiber sensing technology in geotechnical and geological engineering[J]. Journal of Architecture and Civil Engineering,2015,32(3):28-37. DOI: 10.3969/j.issn.1673-2049.2015.03.005

    [3] 程刚,王振雪,朱鸿鹄,等. 基于分布式光纤感测的岩土体变形监测研究综述[J]. 激光与光电子学进展,2022,59(19):51-70.

    CHENG Gang,WANG Zhenxue,ZHU Honghu,et al. Research review of rock and soil deformation monitoring based on distributed fiber optic sensing[J]. Laser & Optoelectronics Progress,2022,59(19):51-70.

    [4] 柴敬,刘永亮,袁强,等. 矿山围岩变形与破坏光纤感测理论技术及应用[J]. 煤炭科学技术,2021,49(1):208-217.

    CHAI Jing,LIU Yongliang,YUAN Qiang,et al. Theory-technology and application of optical fiber sensing on deformation and failure of mine surrounding rock[J]. Coal Science and Technology,2021,49(1):208-217.

    [5] 柴敬,杜文刚,袁强,等. 物理模型试验光纤传感技术测试方法分析[J]. 西安科技大学学报,2018,38(5):728-736.

    CHAI Jing,DU Wengang,YUAN Qiang,et al. Analysis of test method for physical model test based on optical fiber sensing technology detection[J]. Journal of Xi'an University of Science and Technology,2018,38(5):728-736.

    [6] 李延河, 杨战标, 朱元广, 等. 基于弱光纤光栅传感技术的围岩变形监测研究[J/OL]. 煤炭科学技术: 1-9[2022-09-13]. http://kns.cnki.net/kcms/detail/11.2402.td.20220826.1716.006.html.

    LI Yanhe, YANG Zhanbiao, ZHU Yuanguang, et al. Research on deformation monitoring of surrounding rock based on weak fiber grating sensing technology[J/OL]. Coal Science and Technology: 1-9[2022-09-13]. http://kns.cnki.net/kcms/detail/11. 2402.td.20220826.1716.006.html.

    [7] 兰建功,张红俊. 基于光纤光栅传感器的巷道矿压监测方法研究[J]. 煤炭技术,2022,41(2):121-124.

    LAN Jiangong,ZHANG Hongjun. Research on roadway ground pressure monitoring method based on grating fiber sensor[J]. Coal Technology,2022,41(2):121-124.

    [8] 汤树成,张杰,张恒,等. 光纤光栅传感技术在煤矿安全监测系统中的应用[J]. 工矿自动化,2014,40(7):41-44.

    TANG Shucheng,ZHANG Jie,ZHANG Heng,et al. Application of fiber gratting sensing technology in mine safety monitoring system[J]. Industry and Mine Automation,2014,40(7):41-44.

    [9] 李锦辉, 张俊齐, 魏强, 等. 基于自感知FRP锚杆的隧道围岩变形监测与松动圈识别[J/OL]. 西南交通大学学报: 1-8[2022-09-13]. http://kns.cnki.net/kcms/detail/51.1277.U.20220520. 1839.010.html.

    LI Jinhui, ZHANG Junqi, WEI Qiang, et al. Tunnel surrounding rock deformation monitoring and loose zone identification based on self-sensing FRP anchor[J/OL]. Journal of Southwest Jiaotong University: 1-8[2022-09-13]. http://kns.cnki.net/kcms/detail/51.1277.U.20220520.1839.010.html.

    [10] 张宁博,王建达,秦凯,等. 基于一孔多点式应力与位移监测系统的掘进巷道冲击危险性评价[J]. 煤炭学报,2020,45(增刊1):140-149. DOI: 10.13225/j.cnki.jccs.2019.0952

    ZHANG Ningbo,WANG Jianda,QIN Kai,et al. Evaluation of coal bump risk in excavation roadway based on multi-point stress and displacement monitoring system[J]. Journal of China Coal Society,2020,45(S1):140-149. DOI: 10.13225/j.cnki.jccs.2019.0952

    [11] 刘德军,张强勇,陈旭光,等. 深部巷道围岩破裂模型试验变形量测研究[J]. 四川大学学报(工程科学版),2010,42(4):71-77.

    LIU Dejun,ZHANG Qiangyong,CHEN Xuguang,et al. Study on deformation measurement in surrounding rock failure model test of deep roadway[J]. Journal of Sichuan University(Engineering Science Edition),2010,42(4):71-77.

    [12] 侯公羽,胡涛,徐桂城,等. 基于分布式光纤技术的煤矿巷道顶板监测系统[J]. 工矿自动化,2020,46(1):1-6.

    HOU Gongyu,HU Tao,XU Guicheng,et al. Coal mine roadway roof monitoring system based on distributed optical fiber technology[J]. Industry and Mine Automation,2020,46(1):1-6.

    [13] 朱少华,岳音,韩洪波,等. 光纤传感技术在相似材料模型试验中的应用[J]. 传感技术学报,2020,33(4):621-628. DOI: 10.3969/j.issn.1004-1699.2020.04.022

    ZHU Shaohua,YUE Yin,HAN Hongbo,et al. Application of optical fiber sensing technology in similar materials model test[J]. Chinese Journal of Sensors and Actuators,2020,33(4):621-628. DOI: 10.3969/j.issn.1004-1699.2020.04.022

    [14] 刘少林,张丹,张平松,等. 基于分布式光纤传感技术的采动覆岩变形监测[J]. 工程地质学报,2016,24(6):1118-1125.

    LIU Shaolin,ZHANG Dan,ZHANG Pingsong,et al. Deformation monitoring of overburden based on distributed optical fiber sensing[J]. Journal of Engineering Geology,2016,24(6):1118-1125.

    [15] 李虎威,方新秋,梁敏富,等. 基于光纤光栅的围岩应力监测技术研究[J]. 工矿自动化,2015,41(11):17-20. DOI: 10.13272/j.issn.1671-251x.2015.11.005

    LI Huwei,FANG Xinqiu,LIANG Minfu,et al. Research on monitoring technology of surrounding rock stress based on fiber grating[J]. Industry and Mine Automation,2015,41(11):17-20. DOI: 10.13272/j.issn.1671-251x.2015.11.005

    [16] 孙健. 光纤光栅位移传感器在边坡监测中的应用研究[J]. 工矿自动化,2014,40(2):95-98. DOI: 10.13272/j.issn.1671-251x.2014.02.025

    SUN Jian. Application research of fiber grating displacement sensor in slope monitoring[J]. Industry and Mine Automation,2014,40(2):95-98. DOI: 10.13272/j.issn.1671-251x.2014.02.025

    [17] 苏胜昔,杨昌民,范喜安. 光纤光栅传感技术在高速公路隧道围岩变形实时监测中的应用[J]. 工程力学,2014,31(增刊1):134-138,144.

    SU Shengxi,YANG Changmin,FAN Xi'an. Application of fiber Bragg grating sensor technology in highway tunnel surrounding rock deformation and real-time monitoring[J]. Engineering Mechanics,2014,31(S1):134-138,144.

    [18] 何勇,姜帅,毛江鸿,等. 结构裂缝的分布式光纤监测方法及试验研究[J]. 土木建筑与环境工程,2012,34(1):1-6.

    HE Yong,JIANG Shuai,MAO Jianghong,et al. Cracking monitoring method and experiment with distributed fiber sensor[J]. Journal of Civil,Architectural & Environmental Engineering,2012,34(1):1-6.

    [19] 董鹏,夏开文,于长一,等. 浅埋隧道覆岩变形沉降的分布式光纤监测与分析[J]. 防灾减灾工程学报,2019,39(5):724-732. DOI: 10.13409/j.cnki.jdpme.2019.05.005

    DONG Peng,XIA Kaiwen,YU Changyi,et al. Monitoring and analysis of stratum deformation and subsidence overlying a shallow tunnel using distributed optical fiber sensing technology[J]. Journal of Disaster Prevention and Mitigation Engineering,2019,39(5):724-732. DOI: 10.13409/j.cnki.jdpme.2019.05.005

    [20] 刘泉声,王俊涛,肖龙鸽,等. OFDR光纤传感技术在十字岩柱暗挖法物理模型试验中的应用[J]. 岩石力学与工程学报,2017,36(5):1063-1075. DOI: 10.13722/j.cnki.jrme.2016.0956

    LIU Quansheng,WANG Juntao,XIAO Longge,et al. Application of OFDR-based sensing technology in geo-mechanical model test on tunnel excavation using cross rock pillar method[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(5):1063-1075. DOI: 10.13722/j.cnki.jrme.2016.0956

    [21] 张宇,史波,汤国强. 光纤光栅传感技术在洞室围岩变形监测中的应用[J]. 人民长江,2019,50(8):126-130. DOI: 10.16232/j.cnki.1001-4179.2019.08.022

    ZHANG Yu,SHI Bo,TANG Guoqiang. Application of fiber grating sensing technology in deformation monitoring of cavern surrounding rock[J]. Yangtze River,2019,50(8):126-130. DOI: 10.16232/j.cnki.1001-4179.2019.08.022

  • 期刊类型引用(18)

    1. 段林川,罗文柯,张大伟,周加庆,唐建华. 煤层瓦斯有效抽采半径与布孔间距的数值模拟. 矿业工程研究. 2023(01): 36-41 . 百度学术
    2. 李桂明,李绍泉,李思光,李绍鹏,尚宇琦. 基于SF6气体示踪法的顺层钻孔有效抽采半径测定与效果评价. 煤矿现代化. 2023(04): 27-31 . 百度学术
    3. 何清波,王玉龙,姜亦武,黄义通,杨俊生,马西仃,陈旭,赵鹏翔. 顺层钻孔预抽巨厚煤层瓦斯影响因素分析及工程实践. 煤炭技术. 2023(08): 139-144 . 百度学术
    4. 常明,王军,陈现辉. 本煤层顺层钻孔布孔间距模拟及应用研究. 煤炭技术. 2023(10): 134-136 . 百度学术
    5. 李斗. 石门揭煤预抽钻孔参数数值模拟研究及应用. 采矿技术. 2023(06): 248-252 . 百度学术
    6. 魏晓,刘雄,蒋旭刚. 采动条件下顺层低渗透瓦斯抽采数值模拟研究. 采矿技术. 2022(06): 73-77+81 . 百度学术
    7. 徐刚,张剀文,范亚飞. 叠加效应影响下钻孔有效抽采半径的数值模拟及布孔间距优化. 矿业安全与环保. 2021(01): 91-96 . 百度学术
    8. 薛彦平. 近距离煤层群综采工作面瓦斯治理优选措施. 工矿自动化. 2021(02): 98-103 . 本站查看
    9. 郭欣,李克文,令狐建设,李耀谦. 瓦斯有效抽采半径影响因素的数值模拟研究. 煤炭技术. 2021(05): 119-122 . 百度学术
    10. 阴昊阳,许石青,郑连军. 考虑基质多尺度扩散的双孔隙介质模型. 矿业工程研究. 2021(01): 62-70 . 百度学术
    11. 段会军. 高强度开采综放工作面上隅角瓦斯联合抽采实践. 工矿自动化. 2020(02): 1-5+38 . 本站查看
    12. 王小朋. 赵庄煤业低透气性煤层有效抽采半径测定分析. 内蒙古煤炭经济. 2020(02): 21-22+25 . 百度学术
    13. 程鹏鹏. 关于顺层钻孔瓦斯抽采半径及布孔间距分析. 山西化工. 2020(03): 90-91+95 . 百度学术
    14. 申忠生,刘明义. 霍尔辛赫煤矿松软煤层瓦斯钻孔维护装置研发与应用. 现代矿业. 2020(09): 173-176+184 . 百度学术
    15. 刘震,王文迪,陈旦旦. 瓦斯抽采顺层钻孔封孔参数数值计算分析. 矿业研究与开发. 2020(12): 100-105 . 百度学术
    16. 陈建强,胡延伟,刘昆轮,王刚,范酒源. 急倾斜特厚煤层水平分段开采瓦斯预抽技术. 科学技术与工程. 2020(34): 14034-14038 . 百度学术
    17. 桑乃文,杨胜强,宋亚伟. 平行钻孔有效抽采半径及合理钻孔间距研究. 工矿自动化. 2019(06): 58-62 . 本站查看
    18. 王腾飞. 王坪矿顺层瓦斯钻孔有效抽采半径的确定. 山东煤炭科技. 2019(06): 90-92+98 . 百度学术

    其他类型引用(12)

图(15)  /  表(4)
计量
  • 文章访问数:  306
  • HTML全文浏览量:  79
  • PDF下载量:  22
  • 被引次数: 30
出版历程
  • 收稿日期:  2022-09-01
  • 修回日期:  2023-03-09
  • 网络出版日期:  2022-10-16
  • 刊出日期:  2023-03-24

目录

    /

    返回文章
    返回