Coal gangue target detection of belt conveyor based on YOLOv5s-SDE
-
摘要: 传统的煤矸图像检测方法需要人工提取图像特征,准确率不高,实用性不强。现有基于改进YOLO的煤矸目标检测方法在速度和精度方面有所提升,但仍不能很好地满足选煤厂带式输送机实时智能煤矸分选需求。针对该问题,在YOLOv5s模型基础上进行改进,构建了YOLOv5s−SDE模型,提出了基于YOLOv5s−SDE的带式输送机煤矸目标检测方法。YOLOv5s−SDE模型通过在主干网络中添加压缩和激励(SE)模块,以增强有用特征,抑制无用特征,改善小目标煤矸检测效果;利用深度可分离卷积替换普通卷积,以减少参数量和计算量;将边界框回归损失函数CIoU替换为EIoU,提高了模型的收敛速度和检测精度。消融实验结果表明:YOLOv5s−SDE模型对煤矸图像的检测准确率达87.9%,平均精度均值(mAP)达92.5%,检测速度达59.9帧/s,可有效检测煤和矸石,满足实时检测需求;与YOLOv5s模型相比,YOLOv5s−SDE模型的准确率下降2.3%,mAP提升1.3%,参数量减少22.2%,计算量下降24.1%,检测速度提升6.4%。同类改进模型对比实验结果表明,YOLOv5s−STA与YOLOv5s−Ghost模型的检测精度明显偏低,YOLOv5s−SDE模型与YOLOv5s模型及YOLOv5s−CBAM模型的检测效果整体相近,但在运动模糊和低照度情况下,YOLOv5s−SDE模型整体检测效果更优。Abstract: Traditional coal gangue image detection methods require manual extraction of image features. The methods have low accuracy and practicality. The existing coal gangue target detection methods based on improved YOLO have improved in speed and precision, but they still cannot meet the real-time intelligent coal gangue sorting needs of belt conveyors in coal preparation plants. In order to solve the above problems, an improvement is made to the YOLOv5s model, and a YOLOv5s-SDE model was constructed. A method for coal gangue target detection of belt conveyors based on YOLOv5s-SDE is proposed. The YOLOv5s-SDE model enhances useful features, suppresses useless features, and improves the detection effect of small target coal gangue by adding squeeze-and-excitation (SE) module to the backbone network. The model replaces ordinary convolutions with depthwise separable convolutions to reduce parameter and computational complexity. The loss function of the bounding box regression CIoU is replaced by the EIoU. This improves the convergence speed and detection precision of the model. The results of the ablation experiment show that the YOLOv5s-SDE model has a detection accuracy of 87.9% for coal gangue images, a mean average precision (mAP) of 92.5%, and a detection speed of 59.9 frames/s. It can effectively detect coal and gangue, meeting real-time detection requirements. Compared with the YOLOv5s model, the accuracy of the YOLOv5s-SDE model decreases by 2.3%, the mAP increases by 1.3%, the number of parameters decreases by 22.2%, the calculation amount decreases by 24.1%, and the detection speed increases by 6.4%. The comparative experimental results of similar improved models show that the detection precision of YOLOv5s-STA model and YOLOv5s-Ghost model is significantly lower. The detection performance of the YOLOv5s-SDE model, YOLOv5s model and YOLOv5s-CBAM model is generally similar. But in the case of motion blur and low lightning, the overall detection performance of the YOLOv5s-SDE model is better.
-
0. 引言
随着智慧矿山的发展,利用图像对矿井安全进行监控得到了广泛应用[1]。然而受煤矿井下光源分布不均、整体光线弱等影响,监控图像呈亮度低、不清晰等特点,给后续的图像分析带来较大困难[2]。因此,增强矿井图像的亮度和清晰度对煤矿安全具有重要意义。
目前,针对矿井低照度图像增强大多采用Retinex算法,其中多尺度Retinex(Multi-Scale Retinex,MSR)算法对矿井图像亮度增强有较好的效果,但容易造成图像产生光晕和色彩失真等问题。张立亚等[3]提出了一种融合双边滤波和MSR算法的井下图像增强方法,能有效减少光晕模糊的现象,但图像边缘不够清晰。Hu Haokun等[4]提出了基于形态学Retinex算子的低照度图像增强算法,能有效提高图像清晰度,但算法较为复杂,需设置参数多。智宁等[5]采用引导滤波提取光照分量来对Retinex算法进行改进,但对光晕处理效果不佳。李晓宇等[6]通过引入快速引导滤波改进Retinex算法,实现了矿井图像的亮度增强,但对图像暗部细节增强不明显。Mu Qi等[7]在引导滤波的基础上提出了一种加权引导滤波(Weighted Guided Filtering,WGIF)算法,通过引入权重因子改进引导滤波的权重,降低了光晕的影响,然而WGIF算法中基于图像局部方差的权重估计[8]对于低照度图像的边缘增强效果并不明显。
针对上述算法存在的不足,本文提出了一种基于TopHat加权引导滤波(TopHat Weighted Guided Filtering,THWGIF)的Retinex算法(以下简称THWGIF−Retinex算法),并用于矿井图像增强。该算法通过引入TopHat变换改进WGIF的权重因子,实现光照分量提取,可提升图像边缘的清晰度,避免产生光晕现象;采用自适应Gamma校正函数对图像的光照分量和饱和度分量进行增强,可改善图像细节信息和色彩失真情况,有效提高矿井图像质量。
1. THWGIF−Retinex算法
采用THWGIF−Retinex算法对矿井图像进行增强,流程如图1所示,具体步骤如下:
(1) 将输入图像从RGB空间转换到HSV空间[9],并将其分离成色调(H)、饱和度(S)、亮度(V)3个通道分量。
(2) 通过THWGIF算法对亮度分量进行光照分量提取;分别对光照分量和饱和度分量进行自适应Gamma校正,得到校正后的光照分量和饱和度分量。
(3) 根据步骤(2)得到的校正后光照分量,采用Retinex算法求得反射分量。
(4) 将色调分量、校正后饱和度分量、反射分量进行通道合并后转回RGB空间,输出增强图像。
1.1 光照分量提取
引导滤波是一种能保持图像边缘的滤波技术[10],将其应用到矿井图像增强中可保留图像细节。假设引导图像与输出图像存在局部线性关系:
$$ {q}_{i}{{ = a}}_{{k}}{I}_{i}{{+ b}}_{{k}}\;\; \forall i\in {\omega }_{{k}} $$ (1) 式中:
$ {q_i} $ 为输出图像中第$ i $ 个像素点的值;$ {{{a}}_{{k}}} $ ,$ {{{b}}_{{k}}} $ 为以像素$ {{k}} $ 为中心的滤波窗口$ {\omega _{{k}}} $ 的线性系数;$ {I_i} $ 为引导图像中第$ i $ 个像素点的值。采用最小二乘法对
$ {{{a}}_{{k}}} $ 和$ {{{b}}_{{k}}} $ 进行求解,代价函数为$$ { E}\left({{a}}_{{k}},{{b}}_{{k}}\right)={\displaystyle \sum\limits_{i{ }\in { }{\omega }_{{k}}}\left[{\left({{a}}_{{k}}{I}_{i}{{+ b}}_{{k}}-{p}_{i}\right)}^{2}+\varepsilon {{a}}_{{k}}{}^{2}\right]} $$ (2) 式中:
$ {p_i} $ 为输入图像中第$ i $ 个像素点的值;$ \varepsilon $ 为正则化参数,其对滤波效果有较大影响。由于引导滤波对所有窗口均选取相同的
$ \varepsilon $ ,未考虑窗口的像素差异,导致图像边缘不清晰。WGIF选取窗口内的方差作为边缘权重因子,用于调节$ \varepsilon $ ,使有明显纹理区域的图像方差更大,对应的权值也更高,从而更好地保留图像边缘信息[11-12]。但方差大不代表图像的边缘信息强,对于井下低照度图像,仅通过计算方差很难得到合适的边缘权重因子。TopHat变换是图像处理中一种形态学变换方式,能够完成较暗背景图像中局部较亮区域的提取[13]。当光照较强时图像边缘有所模糊,通过TopHat变换处理后,光亮区域的边缘效果会有所提升[14]。
为进一步提高边缘检测的准确性,本文将TopHat变换融合到边缘权重因子计算中:
$$ {\varphi _n}{\text{ = }}\frac{1}{N}\sum\limits_{n = 1}^N {\frac{{T\left( m \right) + \alpha }}{{T\left( n \right) + \alpha }}} $$ (3) 式中:
$ {\varphi _n} $ 为边缘权重因子;N为引导图像的像素点个数;$ T\left( m \right) $ 为经过TopHat变换后的图像以像素点$ m $ 为窗口中心的均值;$ T\left( n \right) $ 为引导图像以像素点$ n $ 为窗口中心的均值;$ \alpha $ 为常数,取值$ 1 \times {10^{ - 4}} $ 。对于图像亮度较高的区域,边缘权重因子较大,则对应的
$ \varepsilon $ 较小,能更好地保留亮度较高区域的图像边缘信息。对于图像亮度较低的区域,边缘权重因子较小,则对应的$ \varepsilon $ 较大,对低照度区域有更好的平滑效果。THWGIF对应的代价函数为
$$ { E}\left( {{{{a}}_{{k}}}{{,}}{{{b}}_{{k}}}} \right){{ = }}\sum\limits_{i{{ }} \in {{ }}{\omega _{{k}}}} {\left[ {{{\left( {{{{a}}_{{k}}}{{{I}}_i}{{ + }}{{{b}}_{{k}}}} \right)}^2} + \frac{\varepsilon }{{{\varphi _n}}}{{{a}}_{{k}}}^2} \right]} $$ (4) THWGIF在保持WGIF优势的基础上,能有效减少图像光晕,具有更好的图像边缘保持效果。本文采用THWGIF对光照分量进行提取:
$$ {F}\left( {x,y} \right) = G\left( {I,{r_i},\varepsilon ,s} \right) $$ (5) 式中:
$ {F}\left( {x,y} \right) $ 为根据引导图像 I估计出的光照分量;$ G\left( \bullet \right) $ 为作用于引导图像I的THWGIF运算;$ {r_i} $ 为引导滤波窗口大小;$ s $ 为下采样倍数。WGIF和THWGIF算法对同一幅矿井图像的滤波效果对比如图2所示。可看出在平滑效果相近的前提下,THWGIF算法能更好地保留图像边缘信息。
1.2 光照分量及饱和度分量校正
煤矿大多采用矿灯对矿井进行照明,光源集中在某几处地方,使得图像部分区域过亮,难以观测到暗区域的信息,影响视觉效果。为解决该问题,本文采用自适应Gamma校正函数对光照分量进行增强,使图像不仅在亮度上有所提高,并保证亮度分布更加均匀[15-16]。
$$ Z\left( {x,y} \right) = 255{\left( {\frac{{F\left( {x,y} \right)}}{{255}}} \right)^\gamma } $$ (6) 式中:
$ Z\left( {x,y} \right) $ 为经过校正后的光照分量;$ \gamma $ 为自适应Gamma校正系数。$ \gamma $ 是影响图像亮度的关键。选取不同$ \gamma $ 时的图像增强效果如图3所示。当$ \gamma $ =0.2时,图像出现亮度过饱和的现象;当$ \gamma $ =0.5时,图像暗区域的亮度有明显增强效果,且图像亮区域没有出现过度增强的现象;当$ \gamma $ =0.8时,图像整体亮度增强不明显。因此本文采用的光照分量校正系数为0.5。在HSV空间模型中,当亮度增加,饱和度就会有所降低。为保证图像的饱和度细节不丢失,在对光照分量进行增强后,图像的饱和度分量也要进行相应的增强。本文采用自适应Gamma校正函数对饱和度分量进行增强,经实验可得,当饱和度校正系数为1.1时,图像增强效果最佳。
1.3 反射分量获取
Retinex算法是一种以颜色恒常性为基础的图像增强方法。该算法认为物体的颜色不是由反射光的绝对值决定的,而是由物体的反射能力决定的。
$$ L(x,y) = R(x,y) * F(x,y) $$ (7) 式中:
$ L(x,y) $ 为原始图像;$ R(x,y) $ 为反射分量,通常具有大量的高频信息。为求解反射分量,一般先将式(7)转换到对数域,再移项使原始图像与光照分量相减:
$$ \ln R(x,y) = \ln L(x,y) - \ln F(x,y) $$ (8) 对
$ \ln R(x,y) $ 进行指数运算,得到最终的反射分量。2. 实验分析
选取煤矿井下低照度图像,从主观评价和客观评价2个方面对MSR算法、WGIF−Retinex算法及本文THWGIF−Retinex算法对图像增强效果进行对比。
2.1 主观评价
不同算法下无强光直射的矿井图像增强效果及灰度直方图分别如图4和图5所示,不同算法下有强光直射的矿井图像增强效果及灰度直方图分别如图6和图7所示。
从图4可看出,对于无强光直射的矿井低照度原始图像1,经MSR算法增强后的图像亮度有所增强,但图像细节丢失,整体色彩偏浅;经WGIF−Retinex算法增强后的图像整体亮度较为均匀,在饱和度方面有较好的改善,但图像边缘较为模糊;经THWGIF−Retinex算法增强后的图像与经WGIF−Retinex算法增强后的图像相比,色彩还原度较高,且图像边缘更清晰,视觉效果明显增强。从图6可看出,对于有强光直射的矿井低照度原始图像2,经MSR算法增强后的图像在光源处存在光晕现象;经WGIF−Retinex算法和THWGIF−Retinex算法增强后的图像对光晕有很好的改善效果,且经THWGIF−Retinex算法增强后的图像在还原暗区域的细节信息和清晰度上优于WGIF−Retinex算法增强后的图像。
从图5可看出,原始图像1的灰度级主要分布在0~100之间,经MSR算法增强后的图像直方图灰度级分布在100~250之间,经WGIF−Retinex算法和THWGIF−Retinex算法增强后的图像直方图灰度级分布在0~255之间,灰度级分布范围越广,表明图像对比度越高。从图7可看出,原始图像2的灰度级大多分布在在0~50之间;经MSR算法增强后的图像直方图灰度级分布在100~255之间,表明增强后图像亮度过强;经WGIF−Retinex和THWGIF−Retinex算法增强后的图像直方图灰度级在0~250范围内均匀分布,表明增强后图像的对比度较高;经THWGIF−Retinex算法增强后图像在100~200灰度级范围内的像素点个数大于经WGIF−Retinex算法增强后的图像,表明THWGIF−Retinex算法对图像整体亮度增强效果优于WGIF−Retinex算法。
2.2 客观评价
采用信息熵[17]、平均梯度[18]、标准差[19]、无参考结构清晰度(No-Reference Structural Sharpness,NRSS)[20]作为图像质量客观评价指标。信息熵反映图像的信息量;平均梯度反映图像的清晰度;标准差反映图像的对比度;NRSS是衡量图像质量优劣的重要指标。上述指标的值越大,表明图像质量越好。
表 1 矿井图像1客观评价结果Table 1. Objective evaluation results of mine image 1图像 信息熵 平均梯度 标准差 NRSS 原始图像 6.427 9 3.599 5 26.060 7 0.428 2 MSR算法增强后图像 6.839 3 3.887 1 32.778 3 0.422 7 WGIF−Retinex算法增强后图像 7.311 7 5.347 2 40.859 0 0.551 2 THWGIF−Retinex算法增强后图像 7.231 6 7.525 6 39.728 8 0.622 9 表 2 矿井图像2客观评价结果Table 2. Objective evaluation results of mine image 2图像 信息熵 平均梯度 标准差 NRSS 原始图像 6.511 8 4.855 3 33.418 9 0.399 5 MSR算法增强后图像 7.263 5 4.984 2 36.312 5 0.442 0 WGIF−Retinex算法增强后图像 7.455 9 5.247 3 46.694 2 0.487 7 THWGIF−Retinex算法增强后图像 7.355 0 9.043 4 42.932 8 0.604 1 从表1可看出,对于无强光直射的矿井低照度图像,经MSR算法增强后的图像在NRSS方面略低于原始图像,而经WGIF−Retinex算法和THWGIF−Retinex算法增强后的图像在各指标上均有明显提高;与原始图像相比,经THWGIF−Retinex算法增强后的图像信息熵提高了12.50%,平均梯度提高了109.07%,标准差提高了52.44%,NRSS提高了45.46%;与经WGIF−Retinex算法增强后的图像相比,经THWGIF−Retinex算法增强后的图像在平均梯度和NRSS上分别提高了40.73%和13.00%,但在信息熵和标准差方面略小。从表2可看出,对于有强光直射的矿井低照度图像,3种算法增强后的图像在各指标上均有不同程度的改善;与经MSR算法增强后的图像相比,经THWGIF−Retinex算法增强后的图像信息熵提高了1.24%,平均梯度提高了81.44%,标准差提高了18.23%,NRSS提高了36.67%;与WGIF−Retinex算法相比,THWGIF−Retinex算法在信息熵方面有所降低,但在平均梯度和NRSS方面有较大改善,分别提高了72.34%和23.87%。
3. 结语
针对矿井低照度图像增强,提出了一种THWGIF−Retinex算法。首先,通过THWGIF算法提取图像光照分量,增强光照分量的边缘保持效果;其次,通过自适应Gamma校正函数增强图像光照分量和饱和度分量;然后,利用Retinex算法从增强后的光照分量中获取图像反射分量;最后,将色调分量、反射分量、校正后的饱和度分量合并,得到增强图像。实验结果表明:该算法能有效提高图像的亮度、清晰度和对比度,抑制亮度过饱和、光晕等现象,对抗色彩失真、边缘保持具有明显的作用;经该算法增强后的矿井图像在信息熵、平均梯度、标准差、NRSS方面均有明显提高,矿井图像增强效果好。
-
表 1 消融实验结果
Table 1 Ablation experiment results
网络模型 SE模块 深度可分离卷积 EIoU 准确率/% mAP/% 参数量/105个 每秒浮点运算次数/108 速度/(帧·s−1) YOLOv5s × × × 90.2 91.2 70.2 15.8 56.3 优化模型1 √ × × 92.8 91.0 70.2 16.0 54.4 优化模型2 × √ × 85.6 85.8 54.6 12.0 62.1 优化模型3 × × √ 91.9 92.1 70.2 15.8 56.0 YOLOv5s−SDE √ √ √ 87.9 92.5 54.6 12.0 59.9 表 2 不同改进YOLOv5s模型对比实验结果
Table 2 Comparative experimental results of different improved YOLOv5s models
模型 准确
率/%mAP/% 参数量/
105个每秒浮点
运算次数/108速度/
(帧·s−1)YOLOv5s 90.2 91.2 70.2 15.8 56.3 YOLOv5s−Ghost 84.2 89.3 62.4 14.0 54.9 YOLOv5s−CBAM 90.7 91.8 72.1 16.0 55.4 YOLOv5s−STA 83.1 84.8 55.2 20.6 75.2 YOLOv5s−SDE 87.9 92.5 54.6 12.0 59.9 -
[1] 张强,张润鑫,刘峻铭,等. 煤矿智能化开采煤岩识别技术综述[J]. 煤炭科学技术,2022,50(2):1-26. ZHANG Qiang,ZHANG Runxin,LIU Junming,et al. Review on coal and rock identification technology for intelligent mining in coal mines[J]. Coal Science and Technology,2022,50(2):1-26.
[2] ZHANG Ningbo, LIU Changyou. Radiation characteristics of natural gamma-ray from coal and gangue for recognition in top coal caving[J]. Scientific Reports, 2018, 8. DOI: 10.1038/s41598-017-18625-y.
[3] 王闰泽,郎利影,席思星. 用于智能煤矸分选机器人的改进型VGG网络煤矸识别模型[J]. 煤炭技术,2022,41(1):237-241. WANG Runze,LANG Liying,XI Sixing. Improved VGG network coal gangue recognition model for intelligent coal gangue sorting robot[J]. Coal Technology,2022,41(1):237-241.
[4] 司垒,谭超,朱嘉皓,等. 基于X射线图像和激光点云的煤矸识别方法[J]. 仪器仪表学报,2022,43(9):193-205. SI Lei,TAN Chao,ZHU Jiahao,et al. A coal-gangue recognition method based on X-ray image and laser point cloud[J]. Chinese Journal of Scientific Instrument,2022,43(9):193-205.
[5] 桂方俊,李尧. 基于CBA−YOLO模型的煤矸石检测[J]. 工矿自动化,2022,48(6):128-133. GUI Fangjun,LI Yao. Coal gangue detection based on CBA-YOLO model[J]. Journal of Mine Automation,2022,48(6):128-133.
[6] 王家臣,李良晖,杨胜利. 不同照度下煤矸图像灰度及纹理特征提取的实验研究[J]. 煤炭学报,2018,43(11):3051-3061. WANG Jiachen,LI Lianghui,YANG Shengli. Experimental study on gray and texture features extraction of coal and gangue image under different illuminance[J]. Journal of China Coal Society,2018,43(11):3051-3061.
[7] 鲁恒润,王卫东,徐志强,等. 基于机器视觉的煤矸特征提取与分类研究[J]. 煤炭工程,2018,50(8):137-140. LU Hengrun,WANG Weidong,XU Zhiqiang,et al. Extraction and classification of coal and gangue image features based on machine vision[J]. Coal Engineering,2018,50(8):137-140.
[8] 单鹏飞,孙浩强,来兴平,等. 基于改进Faster R−CNN的综放煤矸混合放出状态识别方法[J]. 煤炭学报,2022,47(3):1382-1394. SHAN Pengfei,SUN Haoqiang,LAI Xingping,et al. Identification method on mixed and release state of coal-gangue masses of fully mechanized caving based on improved Faster R-CNN[J]. Journal of China Coal Society,2022,47(3):1382-1394.
[9] 郝帅,张旭,马旭,等. 基于CBAM−YOLOv5的煤矿输送带异物检测[J]. 煤炭学报,2022,47(11):4147-4156. HAO Shuai,ZHANG Xu,MA Xu,et al. Foreign object detection in coal mine conveyor belt based on CBAM-YOLOv5[J]. Journal of China Coal Society,2022,47(11):4147-4156.
[10] 雷世威,肖兴美,张明. 基于改进YOLOv3的煤矸识别方法研究[J]. 矿业安全与环保,2021,48(3):50-55. LEI Shiwei,XIAO Xingmei,ZHANG Ming. Research on coal and gangue identification method based on improved YOLOv3[J]. Mining Safety & Environmental Protection,2021,48(3):50-55.
[11] 来文豪,周孟然,胡锋,等. 基于多光谱成像和改进YOLO v4的煤矸石检测[J]. 光学学报,2020,40(24):72-80. LAI Wenhao,ZHOU Mengran,HU Feng,et al. Coal gangue detection based on multi-spectral imaging and improved YOLO v4[J]. Acta Optica Sinica,2020,40(24):72-80.
[12] 李永上,马荣贵,张美月. 改进YOLOv5s+DeepSORT的监控视频车流量统计[J]. 计算机工程与应用,2022,58(5):271-279. LI Yongshang,MA Ronggui,ZHANG Meiyue. Traffic monitoring video vehicle volume statistics method based on improved YOLOv5s+DeepSORT[J]. Computer Engineering and Applications,2022,58(5):271-279.
[13] 沈科,季亮,张袁浩,等. 基于改进YOLOv5s模型的煤矸目标检测[J]. 工矿自动化,2021,47(11):107-111,118. SHEN Ke,JI Liang,ZHANG Yuanhao,et al. Research on coal and gangue detection algorithm based on improved YOLOv5s model[J]. Industry and Mine Automation,2021,47(11):107-111,118.
[14] 徐涛,马克,刘才华. 基于深度学习的行人多目标跟踪方法[J]. 吉林大学学报(工学版),2021,51(1):27-38. XU Tao,MA Ke,LIU Caihua. Multi object pedestrian tracking based on deep learning[J]. Journal of Jilin University(Engineering and Technology Edition),2021,51(1):27-38.
[15] 杜京义,史志芒,郝乐,等. 轻量化煤矸目标检测方法研究[J]. 工矿自动化,2021,47(11):119-125. DU Jingyi,SHI Zhimang,HAO Le,et al. Research on lightweight coal and gangue target detection method[J]. Industry and Mine Automation,2021,47(11):119-125.
[16] 宋晓茹,杨佳,高嵩,等. 基于注意力机制与多尺度特征融合的行人重识别方法[J]. 科学技术与工程,2022,22(4):1526-1533. SONG Xiaoru,YANG Jia,GAO Song,et al. Person re-identification method based on attention mechanism and multi-scale feature fusion[J]. Science Technology and Engineering,2022,22(4):1526-1533.
[17] 张璐,李道亮,曹新凯,等. 基于深度可分离卷积网络的粘连鱼体识别方法[J]. 农业工程学报,2021,37(17):160-167. ZHANG Lu,LI Daoliang,CAO Xinkai,et al. Recognition method for adhesive fish based on depthwise separable convolution network[J]. Transactions of the Chinese Society of Agricultural Engineering,2021,37(17):160-167.
[18] 杨永波,李栋. 改进YOLOv5的轻量级安全帽佩戴检测算法[J]. 计算机工程与应用,2022,58(9):201-207. DOI: 10.3778/j.issn.1002-8331.2111-0346 YANG Yongbo,LI Dong. Lightweight helmet wearing detection algorithm of improved YOLOv5[J]. Computer Engineering and Applications,2022,58(9):201-207. DOI: 10.3778/j.issn.1002-8331.2111-0346
[19] 刘普壮. 基于改进YOLO算法的煤矸识别方法与实验研究[D]. 淮南: 安徽理工大学, 2022. LIU Puzhuang. Research on coal and gangue recognition method and experiment based on improved YOLO algorithm[D]. Huainan: Anhui University of Science and Technology, 2022.
[20] 何雨,田军委,张震,等. YOLOv5目标检测的轻量化研究[J]. 计算机工程与应用,2023,59(1):92-99. HE Yu,TIAN Junwei,ZHANG Zhen,et al. Lightweight research of YOLOv5 target detection[J]. Computer Engineering and Applications,2023,59(1):92-99.
[21] ZHANG Yifan,REN Weiqiang,ZHANG Zhang,et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing,2022,506:146-157. DOI: 10.1016/j.neucom.2022.07.042
-
期刊类型引用(5)
1. 谢赛. 矿用电磁先导阀在线自动检测工艺研究及装备研制. 煤矿机械. 2025(03): 52-55 . 百度学术
2. 姜苏龙,郭蒲,赵继云,满家祥,曹超. 液压支架推溜油缸电液缓冲控制阀设计与试验研究. 工矿自动化. 2025(02): 27-33 . 本站查看
3. 刘闯,臧家林,张福海,金志江,钱锦远. 核电主蒸汽阀站中电磁先导阀的动态响应仿真研究. 机电工程. 2024(05): 894-900+932 . 百度学术
4. 刘国强,董军科,樊宏升. 一种先导阀螺钉螺母高度调节自锁装置的设计. 今日制造与升级. 2024(06): 135-137 . 百度学术
5. 张登山,杨浩,刘隽宁. PMW控制比例多路阀低温特性研究. 工矿自动化. 2024(S2): 215-219 . 本站查看
其他类型引用(0)