面向大型数据集的局部敏感哈希K−means算法

魏峰, 马龙

魏峰,马龙. 面向大型数据集的局部敏感哈希K−means算法[J]. 工矿自动化,2023,49(3):53-62. DOI: 10.13272/j.issn.1671-251x.2022080018
引用本文: 魏峰,马龙. 面向大型数据集的局部敏感哈希K−means算法[J]. 工矿自动化,2023,49(3):53-62. DOI: 10.13272/j.issn.1671-251x.2022080018
WEI Feng, MA Long. Locality-sensitive hashing K-means algorithm for large-scale datasets[J]. Journal of Mine Automation,2023,49(3):53-62. DOI: 10.13272/j.issn.1671-251x.2022080018
Citation: WEI Feng, MA Long. Locality-sensitive hashing K-means algorithm for large-scale datasets[J]. Journal of Mine Automation,2023,49(3):53-62. DOI: 10.13272/j.issn.1671-251x.2022080018

面向大型数据集的局部敏感哈希K−means算法

基金项目: 国家重点研发计划资助项目(2021YFB3201905)。
详细信息
    作者简介:

    魏峰(1981—),男,山西太原人,研究员,硕士,现主要从事煤矿智能安全监测系统等方面的研究工作,E-mail:weifeng829@163.com

    通讯作者:

    马龙(1989—),男,山西孝义人,助理研究员,博士,主要研究方向为数据挖掘、煤矿机器人技术,E-mail:444647811@qq.com

  • 中图分类号: TD67

Locality-sensitive hashing K-means algorithm for large-scale datasets

  • 摘要: 大型数据集高效处理策略是煤矿安全监测智能化、采掘智能化等煤矿智能化建设的关键支撑。针对K−means算法面对大型数据集时聚类高效性及准确性不足的问题,提出了一种基于局部敏感哈希(LSH)的高效K−means聚类算法。基于LSH对抽样过程进行优化,提出了数据组构建算法LSH−G,将大型数据集合理划分为子数据组,并对数据集中的噪声点进行有效删除;基于LSH−G算法优化密度偏差抽样(DBS)算法中的子数据组划分过程,提出了数据组抽样算法LSH−GD,使样本集能更真实地反映原始数据集的分布规律;在此基础上,通过K−means算法对生成的样本集进行聚类,实现较低时间复杂度情况下从大型数据集中高效挖掘有效数据。实验结果表明:由10个AND操作与8个OR操作组成的级联组合为最优级联组合,得到的类中心误差平方和(SSEC)最小;在人工数据集上,与基于多层随机抽样(M−SRS)的K−means算法、基于DBS的K−means算法及基于网格密度偏差抽样(G−DBS)的K−means算法相比,基于LSH−GD的K−means算法在聚类准确性方面的平均提升幅度分别为56.63%、54.59%及25.34%,在聚类高效性方面的平均提升幅度分别为27.26%、16.81%及7.07%;在UCI标准数据集上,基于LSH−GD的K−means聚类算法获得的SSEC与CPU消耗时间(CPU−C)均为最优。
    Abstract: Efficient processing strategy for large datasets is a key support for coal mine intelligent constructions, such as the intelligent construction of coal mine safety monitoring and mining. To address the problem of insufficient clustering efficiency and accuracy of the K-means algorithm for large datasets, a highly efficient K-means clustering algorithm based on locality-sensitive hashing (LSH) is proposed. Based on LSH, the sampling process is optimized, and a data grouping algorithm LSH-G is proposed. The large dataset is divided into subgroups and the noisy points in the dataset are removed effectively. Based on LSH-G, the subgroup division process in the density biased sampling (DBS) algorithm is optimized. And a data group sampling algorithm, LSH-GD, is proposed. The sample set can more accurately reflect the distribution law of the original dataset. On this basis, the K-means algorithm is used to cluster the generated sample set, achieving efficient mining of effective data from large datasets with low time complexity. The experimental results show that the optimal cascade combination consists of 10 AND operations and 8 OR operations, resulting in the smallest sum of squares due to error of class center (SSEC). On the artificial dataset, compared with the K-means algorithm based on multi-layer simple random sampling (M-SRS), the K-means algorithm based on DBS, and the K-means algorithm based on grid density biased sampling (G-DBS), the K-means algorithm based on LSH-GD achieves an average improvement of 56.63%, 54.59%, and 25.34% respectively in clustering accuracy. The proposed algorithm achieves an average improvement of 27.26%, 16.81%, and 7.07% in clustering efficiency respectively. On the UCI standard dataset, the K-means clustering algorithm based on LSH-GD obtains optimal SSEC and CPU time consumption (CPU-C).
  • 图  1   $ \left( {{d_1},{d_2},{p_1},{p_2}} \right) $敏感哈希函数的概率分布

    Figure  1.   Probability distribution of sensitive hashing function $ \left( {{d_1},{d_2},{p_1},{p_2}} \right) $

    图  2   不同级联数量情况下LSH−G算法筛选出的数据点噪声变化

    Figure  2.   Noise variation of data points screened by LSH-G algorithm under different cascade numbers

    图  3   进行10%抽样后得到的样本集

    Figure  3.   Sample set obtained after 10% sampling

    图  4   数据量变化对聚类准确性的影响

    Figure  4.   Impact of data size change on clustering accuracy

    图  5   数据维度变化对聚类准确性的影响

    Figure  5.   Impact of data dimension change on clustering accuracy

    图  6   数据类个数变化对聚类准确性的影响

    Figure  6.   Impact of data class number change on clustering accuracy

    图  7   数据量变化对聚类高效性的影响

    Figure  7.   Impact of data size change on clustering efficiency

    图  8   数据维度变化对聚类高效性的影响

    Figure  8.   Impact of data dimension change on clustering efficiency

    图  9   数据类个数变化对聚类高效性的影响

    Figure  9.   Impact of data class number change on clustering efficiency

    表  1   测试数据集特征

    Table  1   Test dataset characteristics

    编号数据集名称数据量/个维度类个数
    1数据集120 00053
    2数据集240 00053
    3数据集360 00053
    4数据集480 00053
    5数据集5120 00053
    6数据集6220 00053
    7数据集740 000103
    8数据集840 000153
    9数据集940 000203
    10数据集1040 000403
    11数据集1140 00056
    12数据集1240 00059
    13数据集1340 000512
    14数据集1440 000527
    15Pen−based10 9921610
    16Shuttle14 50097
    17Magic19 020102
    18Letter Recognition20 0001626
    19Statlog58 00095
    下载: 导出CSV

    表  2   不同级联组合下19个样本集的SSEC

    Table  2   The SSEC of 19 sample sets under different cascaded combinations

    ASSEC
    O=1O=2O=3O=4O=5O=6O=7O=8O=9O=10
    111.62511.08010.3259.6859.0728.5867.9417.3136.8416.309
    210.95410.6069.8529.2588.6958.1817.5296.9976.3585.879
    310.1079.7589.3558.8578.5817.8857.2846.6226.0215.514
    49.2829.0418.7588.5868.2997.6027.0856.4985.8845.392
    58.3547.9117.6897.3267.2816.9896.6516.1855.6465.218
    67.0596.8826.7116.6326.4986.2865.9895.7145.3274.881
    75.9445.8015.6935.3895.1544.9974.7274.5894.3014.082
    84.7364.6884.5124.3874.0973.8273.5813.1582.9292.897
    93.9353.5593.3323.2013.0232.8352.6062.4832.2982.255
    103.1033.0222.9152.8012.6842.5372.4632.1422.1972.205
    下载: 导出CSV

    表  3   不同数据量数据集的SSEC

    Table  3   The SSEC of datasets with different data size

    数据集序号数据量SSEC
    算法1算法2算法3算法4
    1 20000 0.0812 0.0686 0.0628 0.0527
    2 40000 0.0832 0.0781 0.0611 0.0505
    3 60000 0.0904 0.0815 0.0587 0.0463
    4 80000 0.0926 0.0784 0.0501 0.0412
    5 120000 0.1051 0.0801 0.0491 0.0369
    6 220000 0.2057 0.0947 0.0452 0.0305
    下载: 导出CSV

    表  4   不同维度数据集的SSEC

    Table  4   The SSEC of datasets with different dimensions

    数据集序号维度平均SSEC
    算法1算法2算法3算法4
    2 5 0.0166 0.0156 0.0122 0.0101
    7 10 0.0171 0.0165 0.0144 0.0111
    8 15 0.0193 0.0215 0.0142 0.0095
    9 20 0.0207 0.0257 0.0132 0.0082
    10 40 0.0288 0.0360 0.0124 0.0059
    下载: 导出CSV

    表  5   不同类个数数据集的SSEC

    Table  5   The SSEC of datasets with different number of data class

    数据集序号类个数平均SSEC
    算法1算法2算法3算法4
    2 3 0.0277 0.0260 0.0204 0.0168
    11 6 0.0315 0.0356 0.0178 0.0162
    12 9 0.0448 0.0548 0.0173 0.0157
    13 12 0.0591 0.0687 0.0198 0.0154
    14 27 0.0798 0.0975 0.0251 0.0115
    下载: 导出CSV

    表  6   不同数据量数据集的CPU−C

    Table  6   The CPU-C of datasets with different data size

    数据集序号数据量CPU−C/s
    算法1算法2算法3算法4
    1 20000 4.782 3.964 3.728 3.697
    2 40000 5.525 4.698 4.388 4.171
    3 60000 6.413 6.422 6.132 5.981
    4 80000 8.522 7.335 6.716 6.435
    5 120000 12.606 9.318 7.931 7.386
    6 220000 16.131 14.969 10.949 9.852
    下载: 导出CSV

    表  7   不同数据维度数据集的CPU−C

    Table  7   The CPU-C of dataset with different dimensions

    数据集序号维度CPU−C/s
    算法1算法2算法3算法4
    2 5 5.525 4.698 4.388 4.171
    7 10 6.091 5.131 4.779 4.433
    8 15 6.788 5.764 5.286 4.825
    9 20 7.645 6.598 5.862 5.276
    10 40 10.481 10.771 8.535 7.411
    下载: 导出CSV

    表  8   不同类个数数据集的CPU−C

    Table  8   The CPU-C of datasets with different number of class

    数据集序号类个数CPU−C/s
    算法1算法2算法3算法4
    2 3 5.525 4.698 4.388 4.171
    11 6 6.223 5.308 4.858 4.801
    12 9 6.981 5.991 5.403 5.314
    13 12 7.831 6.866 6.286 5.757
    14 27 12.481 11.986 9.997 7.634
    下载: 导出CSV

    表  9   4种算法在UCI标准数据集上的SSEC与CPU−C

    Table  9   The SSEC and CPU-C of 4 algorithms on the UCI standard dataset

    数据集算法1算法2算法3算法4
    SSECCPU−C/sSSECCPU−C/sSSECCPU−C/sSSECCPU−C/s
    Pen-based6298.2313.6916717.0813.0835916.7412.6265495.6111.764
    Shuttle2965.1411.9723117.2510.8362403.8710.4912214.6610.037
    Magic2584.6210.1312615.549.4512478.779.0772398.238.235
    Letter Recognition1098.2515.7991311.8714.0821027.2513.221936.4811.943
    Statlog2574.1814.8212724.8313.1872315.2511.8422080.5410.294
    下载: 导出CSV
  • [1] 杜毅博,赵国瑞,巩师鑫. 智能化煤矿大数据平台架构及数据处理关键技术研究[J]. 煤炭科学技术,2020,48(7):177-185. DOI: 10.13199/j.cnki.cst.2020.07.018

    DU Yibo,ZHAO Guorui,GONG Shixin. Study on big data platform architecture of intelligent coal mine and key technologies of data processing[J]. Coal Science and Technology,2020,48(7):177-185. DOI: 10.13199/j.cnki.cst.2020.07.018

    [2] 武福生,卜滕滕,王璐. 煤矿安全智能化及其关键技术[J]. 工矿自动化,2021,47(9):108-112. DOI: 10.13272/j.issn.1671-251x.17833

    WU Fusheng,BU Tengteng,WANG Lu. Coal mine safety intelligence and key technologies[J]. Industry and Mine Automation,2021,47(9):108-112. DOI: 10.13272/j.issn.1671-251x.17833

    [3] 胡青松,张赫男,李世银,等. 基于大数据与AI驱动的智能煤矿目标位置服务技术[J]. 煤炭科学技术,2020,48(8):121-130. DOI: 10.13199/j.cnki.cst.2020.08.015

    HU Qingsong,ZHANG Henan,LI Shiyin,et al. Intelligent coal mine target location service technology based on big data and AI driven[J]. Coal Science and Technology,2020,48(8):121-130. DOI: 10.13199/j.cnki.cst.2020.08.015

    [4]

    MAYA G P S,CHINTALA B R. Big data challenges and opportunities in agriculture[J]. International Journal of Agricultural and Environmental Information Systems,2020,11(1):48-66. DOI: 10.4018/IJAEIS.2020010103

    [5] 叶鸥,窦晓熠,付燕,等. 融合轻量级网络和双重注意力机制的煤块检测方法[J]. 工矿自动化,2021,47(12):75-80. DOI: 10.13272/j.issn.1671-251x.2021030075

    YE Ou,DOU Xiaoyi,FU Yan,et al. Coal block detection method integrating lightweight network and dual attention mechanism[J]. Industry and Mine Automation,2021,47(12):75-80. DOI: 10.13272/j.issn.1671-251x.2021030075

    [6] 温瑞英,王红勇. 基于因子分析和K−means聚类的空中交通复杂性评价[J]. 太原理工大学学报,2016,47(3):384-388,404. DOI: 10.16355/j.cnki.issn1007-9432tyut.2016.03.020

    WEN Ruiying,WANG Hongyong. Evaluation of air traffic complexity based on factor analysis and K-means clustering[J]. Journal of Taiyuan University of Technology,2016,47(3):384-388,404. DOI: 10.16355/j.cnki.issn1007-9432tyut.2016.03.020

    [7]

    SINAGA K P,YANG M-S. Unsupervised K-means clustering algorithm[J]. IEEE Access,2020,8:80716-80727. DOI: 10.1109/ACCESS.2020.2988796

    [8]

    BAIG A,MASOOD S,TARRAY T A. Improved class of difference-type estimators for population median in survey sampling[J]. Communications in Statistics-Theory and Methods,2019,49(23):5778-5793.

    [9]

    LIAO Kaiyang,LIU Guizhong. An efficient content based video copy detection using the sample based hierarchical adaptive k-means clustering[J]. Journal of Intelligent Information Systems,2015,44(1):133-158. DOI: 10.1007/s10844-014-0332-5

    [10]

    PALMER C R,FALOUTSOS C. Density biased sampling:an improved method for data mining and clustering[J]. ACM SIGMOD Record,2000,29(2):82-92. DOI: 10.1145/335191.335384

    [11]

    HUANG Jianbin,SUN Heli,KANG Jianmei,et al. ESC:an efficient synchronization-based clustering algorithm[J]. Knowledge-Based Systems,2013,40:111-122. DOI: 10.1016/j.knosys.2012.11.015

    [12]

    MINAEI-BIDGOLI B,PARVIN H,ALINEJAD-ROKNY H,et al. Effects of resampling method and adaptation on clustering ensemble efficacy[J]. Artificial Intelligence Review,2014,41(1):27-48. DOI: 10.1007/s10462-011-9295-x

    [13]

    AGGARWAL A, DESHPANDE A, KANNAN R. Adaptive sampling for K-means clustering[C]. 12th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems/13th International Workshop on Randomization and Computation, Berkeley, 2009: 15-28.

    [14]

    KUMAR K M,REDDY A R M. An efficient K-means clustering filtering algorithm using density based initial cluster centers[J]. Information Sciences,2017,418/419:286-301. DOI: 10.1016/j.ins.2017.07.036

    [15]

    SÁEZ J A,KRAWCZYK B,WOŹNIAK M. Analyzing the oversampling of different classes and types of examples in multi-class imbalanced datasets[J]. Pattern Recognition,2016,57:164-178. DOI: 10.1016/j.patcog.2016.03.012

    [16] 胡欢. 多维数据上近似聚集和最近邻查询的高效算法[D]. 哈尔滨: 哈尔滨工业大学, 2021.

    HU Huan. Efficient algorithms for approximate aggregation and nearest neighbor queries over multi-dimensional data[D]. Harbin: Harbin Institute of Technology, 2021.

    [17] 李建忠. 面向社交网络的科技领域事件检测系统的研究与实现[D]. 西安: 西安电子科技大学, 2019.

    LI Jianzhong. Researches and implementation of technology event detection in social networks[D]. Xi'an: Xidian University, 2019.

    [18] 周萌. 基于多粒度级联森林哈希学习的图像检索[D]. 重庆: 重庆邮电大学, 2019.

    ZHOU Meng. Multi-grained cascade forest based hashing for image retrieval[D]. Chongqing: Chongqing University of Posts and Telecommunications, 2019.

    [19]

    NELSON K P,THISTLETON W J. Comments on "Generalized Box-Müller method for generating q-Gaussian random deviates"[J]. IEEE Transactions on Information Theory,2021,67(10):6785-6789. DOI: 10.1109/TIT.2021.3071489

    [20] 谷晓忱,张民选. 一种基于FPGA的高斯随机数生成器的设计与实现[J]. 计算机学报,2011,34(1):165-173. DOI: 10.3724/SP.J.1016.2011.00165

    GU Xiaochen,ZHANG Minxuan. Design and implementation of a FPGA based Gaussian random number generator[J]. Chinese Journal of Computers,2011,34(1):165-173. DOI: 10.3724/SP.J.1016.2011.00165

    [21]

    ARNAIZ-GONZÁLEZ Á,DÍEZ-PASTOR J-F,RODRÍGUEZ J J,et al. Instance selection of linear complexity for big data[J]. Knowledge-Based Systems,2016,107:83-95. DOI: 10.1016/j.knosys.2016.05.056

  • 期刊类型引用(10)

    1. 林广旭. 基于BP神经网络模型的带式输送机张紧力波动规律分析. 机电产品开发与创新. 2025(02): 121-124 . 百度学术
    2. 林广旭. 煤矿用梭车运输电机设计与特性分析. 煤矿机械. 2025(05): 13-16 . 百度学术
    3. 林广旭. JOY10SC32-48B梭车转载电动机国产化修复对比试验研究. 矿山机械. 2025(05): 9-13 . 百度学术
    4. 吕杰. 神经网络在带式输送机张紧力控制系统中的应用与对比. 机械管理开发. 2023(07): 225-227 . 百度学术
    5. 冯书文. 煤矿用带式输送机皮带张紧智能控制设计. 江西煤炭科技. 2022(02): 189-191 . 百度学术
    6. 武进. 带式输送机皮带液压张紧控制系统分析. 山西焦煤科技. 2021(03): 21-23+50 . 百度学术
    7. 刘媛媛. 煤矿机电设备智能化维护研究现状与发展趋势. 工矿自动化. 2021(07): 79-84 . 本站查看
    8. 牛婷婷,李明,白晋铭. 基于RBF网络的带式输送机张紧力前馈控制. 煤矿机械. 2019(04): 167-169 . 百度学术
    9. 樊治. 自动感应张紧装置在矿用带式输送机中的应用. 机械管理开发. 2019(06): 177-178 . 百度学术
    10. 杨卫东. 带式输送机自动张紧装置. 装备制造技术. 2019(05): 130-134 . 百度学术

    其他类型引用(4)

图(11)  /  表(9)
计量
  • 文章访问数:  313
  • HTML全文浏览量:  63
  • PDF下载量:  21
  • 被引次数: 14
出版历程
  • 收稿日期:  2022-08-04
  • 修回日期:  2023-03-09
  • 网络出版日期:  2022-10-24
  • 刊出日期:  2023-03-24

目录

    /

    返回文章
    返回