水岩作用下区段煤柱合理宽度研究

孔繁龙, 刘敬东, 田灵涛, 张智强, 王冬冬, 郑志强, 徐强

孔繁龙,刘敬东,田灵涛,等. 水岩作用下区段煤柱合理宽度研究[J]. 工矿自动化,2022,48(12):144-150. DOI: 10.13272/j.issn.1671-251x.2022060062
引用本文: 孔繁龙,刘敬东,田灵涛,等. 水岩作用下区段煤柱合理宽度研究[J]. 工矿自动化,2022,48(12):144-150. DOI: 10.13272/j.issn.1671-251x.2022060062
KONG Fanlong, LIU Jingdong, TIAN Lingtao, et al. Study on reasonable width of coal pillar under water-rock interaction[J]. Journal of Mine Automation,2022,48(12):144-150. DOI: 10.13272/j.issn.1671-251x.2022060062
Citation: KONG Fanlong, LIU Jingdong, TIAN Lingtao, et al. Study on reasonable width of coal pillar under water-rock interaction[J]. Journal of Mine Automation,2022,48(12):144-150. DOI: 10.13272/j.issn.1671-251x.2022060062

水岩作用下区段煤柱合理宽度研究

基金项目: 国家自然科学基金资助项目(51874283)。
详细信息
    作者简介:

    孔繁龙(1985—),男,内蒙古鄂尔多斯人,工程师,硕士,主要从事煤矿地质防治水方面的工作,E-mail:k405365518@163.com

    通讯作者:

    徐强(1992—),男,山东邹城人,博士研究生,主要研究方向为矿山压力与岩层控制,E-mail:1101119112@qq.com

  • 中图分类号: TD822.3

Study on reasonable width of coal pillar under water-rock interaction

  • 摘要: 采空区积水与煤岩作用会弱化区段煤柱强度而引起煤柱逐渐破坏和失效,水岩作用是区段煤柱合理宽度设计必须考虑的关键因素。以内蒙古鄂尔多斯新街矿区某矿31采区与33采区间煤柱留设为工程背景,开展了单轴压缩实验和理论分析,结果表明:水岩作用对煤体强度参数弱化产生显著影响,区段煤柱积水侧塑性区宽度随煤体强度弱化程度的增加而扩大;基于区段煤柱保持稳定的基本条件,计算得到区段煤柱合理的理论宽度为53.62 m。利用FLAC3D模拟了水岩作用的过程,分析了不同宽度煤柱的稳定性特征,结果表明:煤柱宽度较小时,采空区积水弱化作用对较高应力集中的弹性核区具有更强的破坏能力;随着煤柱宽度的增大,弹性核区应力集中程度降低,采空区积水侧垂直应力低于原岩垂直应力的区域范围则有所增大,煤柱两侧应力集中分布趋于均匀,采空区积水弱化作用对弹性核区的影响不再显著。综合理论计算与数值模拟结果,确定区段煤柱宽度为70 m。工程应用结果表明,70 m宽留设煤柱可以有效承载顶板压力,巷道围岩变形小,锚索受力稳定,保障了矿井安全生产。
    Abstract: The water accumulation in goaf and coal rock interaction will weaken the strength of the coal pillar in the section and cause gradual destruction and failure of the coal pillar. The interaction of water and rock is the key factor that must be considered in the design of the reasonable width of the coal pillar. The uniaxial compression experiment and theoretical analysis are carried out based on the engineering background of the coal pillar design between mining area 31 and 33 of a mine in Xinjie mining area, Ordos, Inner Mongolia. The results show that water-rock interaction has a significant impact on the weakening of coal strength parameters. The width of the plastic zone at the side of the water accumulation in the section coal pillar expands with the increase of the weakening degree of the coal body strength. Based on the basic conditions for the stability of the section coal pillar, the reasonable theoretical width of the section coal pillar is 53.62 m. Using FLAC3D to simulate the process of water-rock interaction, the paper analyzes the stability characteristics of coal pillar with different widths. The results show that when the width of the coal pillar is small, the weakening effect of water accumulation in goaf has stronger destructive capability to the elastic core area with higher stress concentration. With the increase of coal pillar width, the stress concentration degree in the elastic core area decreases. The area where the vertical stress at the water accumulation side of the goaf is lower than that of the original rock increases. The stress concentration distribution on both sides of the coal pillar tends to be uniform, and the weakening effect of water accumulation in the goaf on the elastic core area is no longer significant. Based on the results of theoretical calculation and numerical simulation, the width of coal pillar is determined to be 70 m. The engineering application results show that the coal pillar with width of 70 m can effectively bear the roof pressure. The deformation of the roadway surrounding rock is small, the stress of the anchor cable is stable, and the safety production of the mine is guaranteed.
  • 图  1   工作面布置

    Figure  1.   Layout of working face

    图  2   煤样应力−应变曲线及破坏形态

    Figure  2.   Stress-strain curves and failure mode of coal sample

    图  3   31301工作面回采后煤柱塑性区分布

    Figure  3.   Distribution of plastic zone after 31301 working face mining

    图  4   煤柱宽度为50,56 m时塑性区分布

    Figure  4.   Distribution of plastic zone when the width of coal pillar is 50 m and 56 m

    图  5   煤柱宽度为62 m时塑性区分布

    Figure  5.   Distribution of plastic zone when the width of coal pillar is 62 m

    图  6   煤柱宽度为68 m时塑性区分布

    Figure  6.   Distribution of plastic zone when the width of coal pillar is 68 m

    图  7   煤柱宽度为74 m时塑性区分布

    Figure  7.   Distribution of plastic zone when the width of coal pillar is 74 m

    图  8   煤柱应力分布云图

    Figure  8.   Nephogram of coal pillar stress distribution

    图  9   垂直应力集中系数分布曲线

    Figure  9.   Vertical stress concentration coefficient distribution curve

    图  10   33301回风巷矿压显现规律

    Figure  10.   Mine pressure behavior law of 33301 return airway

    表  1   数值计算模型煤岩体物理力学参数

    Table  1   Physical and mechanical parameters of coal and rock mass in numerical calculation model

    岩层厚度/m弹性模
    量/GPa
    泊松比黏聚
    力/MPa
    内摩擦
    角/(°)
    抗拉强
    度/MPa
    粉砂岩343.510.175.1634.581.500
    细粒砂岩81.610.174.3731.830.510
    粉砂岩345.860.155.6636.000.890
    中粒砂岩63.450.094.2431.340.480
    砂质泥岩265.350.196.2637.441.080
    泥岩26.300.194.9233.830.670
    60.990.213.0526.090.610
    煤(浸水)0.490.210.429.530.004
    泥岩66.750.185.8031.770.680
    粉砂岩264.690.176.4633.580.860
    下载: 导出CSV
  • [1] 杨凯,勾攀峰. 高强度开采双巷布置巷道围岩差异化控制研究[J]. 采矿与安全工程学报,2021,38(1):76-83. DOI: 10.13545/j.cnki.jmse.2019.0431

    YANG Kai,GOU Panfeng. Differential control of surrounding rocks in high-intensity mining with double roadways[J]. Journal of Mining & Safety Engineering,2021,38(1):76-83. DOI: 10.13545/j.cnki.jmse.2019.0431

    [2] 徐强,宁建国,刘学生,等. 浅埋近距离煤层回采巷道支护技术研究[J]. 煤炭工程,2017,49(12):120-123.

    XU Qiang,NING Jianguo,LIU Xuesheng,et al. Study on supporting technology for gateways in close distance shallow seams[J]. Coal Engineering,2017,49(12):120-123.

    [3] 张守宝,皇甫龙,王超,等. 深部高应力双巷掘进巷道围岩稳定性及控制[J]. 中国矿业,2022,31(2):104-112.

    ZHANG Shoubao,HUANGFU Long,WANG Chao,et al. Stability and control of surrounding rock in double lane tunneling with deep high stress[J]. China Mining Magazine,2022,31(2):104-112.

    [4] 郭强,王萌. 动压影响下双巷布置工作面区段煤柱合理宽度研究[J]. 煤炭工程,2021,53(12):97-102.

    GUO Qiang,WANG Meng. Reasonable coal pillar width of dual lane working face under dynamic pressure[J]. Coal Engineering,2021,53(12):97-102.

    [5] 徐强. 多煤层开采应力传递规律及区段煤柱合理尺寸研究[D]. 青岛: 山东科技大学, 2019.

    XU Qiang. Study on stress transfer law and reasonable size of section pillar in multi-seam mining[D]. Qingdao: Shandong University of Science and Technology, 2019.

    [6] 史金伟,刘增辉,付强,等. 自燃煤层综放开采区段煤柱留设方案优化研究[J]. 矿业研究与开发,2020,40(9):48-53. DOI: 10.13827/j.cnki.kyyk.2020.09.010

    SHI Jinwei,LIU Zenghui,FU Qiang,et al. Optimization study on coal pillar retaining scheme in fully mechanized caving mining section of spontaneous combustion coal seam[J]. Mining Research and Development,2020,40(9):48-53. DOI: 10.13827/j.cnki.kyyk.2020.09.010

    [7] 张红义. 文明煤矿采区下山保护煤柱合理尺寸计算研究[J]. 煤炭工程,2014,46(11):82-84,88. DOI: 10.11799/ce201411026

    ZHANG Hongyi. Study on reasonable size of protective coal pillars in mining area dip[J]. Coal Engineering,2014,46(11):82-84,88. DOI: 10.11799/ce201411026

    [8] 吕晓波. 采动应力影响条件下护巷煤柱留设尺寸研究[J]. 煤矿安全,2019,50(12):189-191,196. DOI: 10.13347/j.cnki.mkaq.2019.12.042

    LYU Xiaobo. Study on retaining size of coal pillar in roadway under mining-induced stress[J]. Safety in Coal Mines,2019,50(12):189-191,196. DOI: 10.13347/j.cnki.mkaq.2019.12.042

    [9] 刘建军,张焦,田野,等. 基于煤厚变化的分区域合理煤柱尺寸及控制技术研究[J]. 煤炭工程,2022,54(11):41-47.

    LIU Jianjun,ZHANG Jiao,TIAN Ye,et al. Reasonable coal pillar size and control technology in different regions based on coal seam thickness variation[J]. Coal Engineering,2022,54(11):41-47.

    [10] 冯吉成,马念杰,赵志强,等. 深井大采高工作面沿空掘巷窄煤柱宽度研究[J]. 采矿与安全工程学报,2014,31(4):580-586. DOI: 10.13545/j.issn1673-3363.2014.04.014

    FENG Jicheng,MA Nianjie,ZHAO Zhiqiang,et al. Width of narrow coal pillar of roadway driving along goaf at large height mining face in deep mine[J]. Journal of Mining & Safety Engineering,2014,31(4):580-586. DOI: 10.13545/j.issn1673-3363.2014.04.014

    [11] 张念超,孙元田,蔡胜海,等. 基于统一强度理论的护巷煤柱尺寸与支护技术研究[J]. 煤矿安全,2016,47(6):209-213.

    ZHANG Nianchao,SUN Yuantian,CAI Shenghai,et al. Research on coal pillar size and supporting technology under based on strength theory[J]. Safety in Coal Mines,2016,47(6):209-213.

    [12] 王琦,樊运平,李刚,等. 厚煤层综放双巷工作面巷间煤柱尺寸研究[J]. 岩土力学,2017,38(10):3009-3016. DOI: 10.16285/j.rsm.2017.10.030

    WANG Qi,FAN Yunping,LI Gang,et al. Determination of coal pillar width between roadways of fully mechanised caving face with double roadways layout in a thick coal seam[J]. Rock and Soil Mechanics,2017,38(10):3009-3016. DOI: 10.16285/j.rsm.2017.10.030

    [13] 姚强岭,郝琪,陈翔宇,等. 煤矿地下水库煤柱坝体宽度设计[J]. 煤炭学报,2019,44(3):890-898.

    YAO Qiangling,HAO Qi,CHEN Xiangyu,et al. Design on the width of coal pillar dam in coal mine groundwater reservoir[J]. Journal of China Coal Society,2019,44(3):890-898.

    [14] 周光华,邵俊杰,吴宝杨,等. 灵新煤矿地下水库煤柱坝体合理尺寸研究[J]. 中国煤炭,2019,44(3):890-898.

    ZHOU Guanghua,SHAO Junjie,WU Baoyang,et al. Research on the reasonable size of coal pillar dam of underground reservoir in Lingxin Coal Mine[J]. China Coal,2019,44(3):890-898.

    [15] 牛宏伟,黎科龙,刘大亮,等. 煤柱宽度对巷道围岩稳定性的影响研究[J]. 中国矿业,2021,30(4):128-133.

    NIU Hongwei,LI Kelong,LIU Daliang,et al. Research on the influence of coal pillar width on the stability of roadway surrounding rock[J]. China Mining Magazine,2021,30(4):128-133.

    [16] 张向阳,常聚才,王磊. 深井动压巷道群围岩应力分析及煤柱留设研究[J]. 采矿与安全工程学报,2010,27(1):72-76. DOI: 10.3969/j.issn.1673-3363.2010.01.014

    ZHANG Xiangyang,CHANG Jucai,WANG Lei. Study on surrounding rock stress and reasonable pillar of mining induced roadway groups in deep well[J]. Journal of Mining & Safety Engineering,2010,27(1):72-76. DOI: 10.3969/j.issn.1673-3363.2010.01.014

    [17] 郝红俊,翟晓荣,胡儒,等. 闭坑矿井积水对邻近生产矿井的影响[J]. 工矿自动化,2022,48(4):60-65.

    HAO Hongjun,ZHAI Xiaorong,HU Ru,et al. Impact of water accumulation in abandoned mines on adjacent production mines[J]. Journal of Mine Automation,2022,48(4):60-65.

    [18] 刘鑫. 孤岛工作面水侵沿空巷道围岩稳控技术研究[J]. 工矿自动化,2021,47(9):118-125.

    LIU Xin. Research on stability control technology of surrounding rock along goaf roadway with water intrusion in isolated island working face[J]. Industry and Mine Automation,2021,47(9):118-125.

    [19] 张文斌,吴基文,翟晓荣,等. 闭坑矿井矿界煤柱采动损伤及其安全性评价[J]. 工矿自动化,2020,46(2):34-99.

    ZHANG Wenbin,WU Jiwen,ZHAI Xiaorong,et al. Mining damage of mine boundary coal pillar in closed mine and its safety evaluation[J]. Industry and Mine Automation,2020,46(2):34-99.

  • 期刊类型引用(1)

    1. 丁自伟,高成登,景博宇,黄兴,刘滨,胡阳,桑昊旻,徐彬,秦立学. 基于机器学习的煤系地层TBM掘进巷道围岩强度预测. 西安科技大学学报. 2025(01): 49-60 . 百度学术

    其他类型引用(0)

图(10)  /  表(1)
计量
  • 文章访问数:  154
  • HTML全文浏览量:  48
  • PDF下载量:  16
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-06-15
  • 修回日期:  2022-12-06
  • 网络出版日期:  2022-10-10
  • 刊出日期:  2022-12-26

目录

    /

    返回文章
    返回