特厚煤层综放开采底板变形破坏深度研究

侯俊华

侯俊华. 特厚煤层综放开采底板变形破坏深度研究[J]. 工矿自动化,2022,48(8):56-61, 121. DOI: 10.13272/j.issn.1671-251x.2022050021
引用本文: 侯俊华. 特厚煤层综放开采底板变形破坏深度研究[J]. 工矿自动化,2022,48(8):56-61, 121. DOI: 10.13272/j.issn.1671-251x.2022050021
HOU Junhua. Research on the deformation and failure depth of the floor in fully mechanized top coal caving of extra-thick seam[J]. Journal of Mine Automation,2022,48(8):56-61, 121. DOI: 10.13272/j.issn.1671-251x.2022050021
Citation: HOU Junhua. Research on the deformation and failure depth of the floor in fully mechanized top coal caving of extra-thick seam[J]. Journal of Mine Automation,2022,48(8):56-61, 121. DOI: 10.13272/j.issn.1671-251x.2022050021

特厚煤层综放开采底板变形破坏深度研究

基金项目: 国家自然科学基金项目(41741020)。
详细信息
    作者简介:

    侯俊华(1983—),男,河南西华人,高级工程师,硕士,现主要从事煤矿安全管理和水害防治方面的工作,E-mail:houjunhua168168@163.com

  • 中图分类号: TD323

Research on the deformation and failure depth of the floor in fully mechanized top coal caving of extra-thick seam

  • 摘要: 为探究特厚煤层综放开采条件下底板变形破坏深度,以兖矿能源集团股份有限公司东滩煤矿1305工作面为背景,采用现场实测、数值模拟和理论计算等方法综合分析了该工作面采动煤层底板变形破坏深度。采用应变感应法和钻孔成像技术的现场实测结果表明:底板受采动矿压作用在水平和垂直方向上存在明显的显现特征,水平方向上超前测点50 m附近、底板浅部10 m深度位置开始受采动矿压影响,工作面推过一定距离之后底板变形破坏剧烈;底板不同深度水平方向上超前距和滞后距变化范围分别为96~115 m和48~52 m,工作面综放开采底板变形破坏深度为16~20 m,垂深20 m以下底板岩层以弹性变形为主。数值模拟的底板不同深度塑性区分布特征表明,随着距工作面底板距离越远,受采动矿压影响越小,塑性区范围越小,底板下20 m基本没发生破坏。理论计算结果确定了底板变形破坏深度为19.2 m。综合现场实测、数值模拟和理论计算结果,可知1305工作面综放开采底板变形破坏深度不超过20 m。研究结果可为矿井特厚煤层综放开采底板水害防治提供量化依据。
    Abstract: In order to explore the deformation and failure depth of the floor under the condition of fully mechanized top coal caving of extra-thick coal seam, this paper takes 1305 working face of Dongtan Coal Mine of Yankuang Energy Group Co., Ltd. as the background. The deformation and failure depth of the floor in the mining coal seam of the working face is comprehensively analyzed by using field measurement, numerical simulation and theoretical calculation. The field measurement results using the strain induction method and borehole imaging technology show the following results. The floor is affected by mining ground pressure, and there are obvious characteristics in horizontal and vertical directions. In the horizontal direction, the position near the advanced support measuring point of 50 m and at the depth of 10 m in the shallow part of the floor starts to be affected by the mining ground pressure. After the working face is pushed over a certain distance, the deformation and failure of the floor are severe. The variation range of crossover distance and lag distance in the horizontal direction of different depths of the floor is 96-115 m and 48-52 m respectively. The deformation and failure depth of the floor in fully mechanized top coal caving of the working face is 16-20 m. The floor rock below the vertical depth of 20 m is mainly elastic deformation. The distribution characteristics of the plastic zone in different depths of the floor by numerical simulation show that the farther the distance from the working face floor is, the smaller the influence of mining pressure is, and the smaller the range of the plastic zone is. The 20 m under the floor is basically not damaged. The result of the theoretical calculation confirms that the deformation and failure depth of the floor is 19.2 m. Based on the results of field measurement, numerical simulation and theoretical calculation, the deformation and failure depth of the floor in 1305 working face is less than 20 m. The research results can provide the quantitative basis for the prevention and control of floor water disasters in fully mechanized top coal caving of extra-thick coal seams.
  • 图  1   1305工作面顶底板地层柱状图

    Figure  1.   Strata column of 1305 working face roof and floor

    图  2   测试钻孔布置平面

    Figure  2.   Plane of test boreholes layout

    图  3   测试钻孔剖面

    Figure  3.   Profile of test boreholes

    图  4   1号测试钻孔各测点应变增量随工作面推进距离变化曲线

    Figure  4.   Strain increment curves of measuring points in No.1 test borehole during working face advance

    图  5   工作面推进不同距离时底板下垂深10 m处2号测试钻孔孔壁图像

    Figure  5.   Images of No.2 test borehole wall at 10 m vertical depth of floor with different working face advance distances

    图  6   工作面顶底板工程地质模型纵剖面

    Figure  6.   Profile of engineering geological model for working face roof and floor

    图  7   3号煤层开采完毕后塑性区分布

    Figure  7.   Distribution of plastic zone after No.3 coal seam mining

    表  1   测试钻孔主要参数

    Table  1   Main parameters of test boreholes

    参数1号测试钻孔2号测试钻孔
    开孔直径/mm12791
    开孔深度/m2.0
    孔口管直径/mm110
    孔口管长度/m2.0
    终孔直径/mm9191
    钻孔方位角/(°)3142
    钻孔倾角/(°)40(俯角)70(仰角)
    钻孔与巷道夹角/(°)9080
    煤岩层真倾角/(°)5.66.0
    钻孔与煤岩层走向线夹角/(°)8187
    煤岩层视倾角/(°)5.56.0
    钻孔总深度/m3010
    控制3号煤层底板最大真厚度/m2911
    下载: 导出CSV

    表  2   工作面采动底板变形感应距

    Table  2   Deformation induction distances of mining floor of working face

    测点垂深/m超前距/m滞后距/m感应范围/m
    16115
    2011049159
    2410248150
    299652148
    下载: 导出CSV

    表  3   工作面顶底板岩层物理力学参数

    Table  3   Physical and mechanical parameters of working face roof and floor strata

    岩层密度/
    (kg·m−3
    体积模量/
    GPa
    剪切模量/
    GPa
    黏聚力/
    MPa
    内摩擦角/
    (°)
    抗拉强度/
    MPa
    中细砂岩2 6502.901.749.5414.2
    泥质岩2 5502.611.357.6303.0
    粗砂岩2 6903.352.3010.7454.9
    3号煤层1 4002.080.541.2200.6
    粉砂岩2 6002.911.507.8323.6
    石灰岩2 8005.574.5311.4486.7
    下载: 导出CSV
  • [1] 国家煤矿安全监察局. 煤矿防治水细则[M]. 北京: 煤炭工业出版社, 2018.

    State Administration of Coal Mine Safety. Rules for water prevention and control in coal mines[M]. Beijing: China Coal Industry Publishing House, 2018.

    [2] 尹尚先,连会青,徐斌,等. 深部带压开采:传承与创新[J]. 煤田地质与勘探,2021,49(1):170-181. DOI: 10.3969/j.issn.1001-1986.2021.01.018

    YIN Shangxian,LIAN Huiqing,XU Bin,et al. Deep mining under safe water pressure of aquifer:inheritance and innovation[J]. Coal Geology & Exploration,2021,49(1):170-181. DOI: 10.3969/j.issn.1001-1986.2021.01.018

    [3] 刘杰. 特厚煤层综放工作面围岩运动的微地震监测[J]. 矿业安全与环保,2008,35(1):44-46. DOI: 10.3969/j.issn.1008-4495.2008.01.016

    LIU Jie. Microseismic monitoring of surrounding rock movement in fully mechanized caving face of extra thick coal seam[J]. Minging Safety & Environmental Protection,2008,35(1):44-46. DOI: 10.3969/j.issn.1008-4495.2008.01.016

    [4] 朱术云,曹丁涛,岳尊彩,等. 特厚煤层综放采动底板变形破坏规律的综合实测[J]. 岩土工程学报,2012,34(10):1931-1938.

    ZHU Shuyun,CAO Dingtao,YUE Zuncai,et al. Comprehensive measurement of characteristics of deformation and failure of extra-thick coal seam floor induced by fully mechanized top-coal mining[J]. Chinese Journal of Geotechnical Engineering,2012,34(10):1931-1938.

    [5] 王一栋,姜振泉,朱术云,等. 特厚煤层采动底板变形破坏的数值模拟与实测对比[J]. 煤矿安全,2012,43(10):35-37. DOI: 10.13347/j.cnki.mkaq.2012.10.015

    WANG Yidong,JIANG Zhenquan,ZHU Shuyun,et al. Contrast of numerical simulation and field measurement on deformation and failure in thick seam mining floor[J]. Safety in Coal Mines,2012,43(10):35-37. DOI: 10.13347/j.cnki.mkaq.2012.10.015

    [6] 李进军,李怀宾,顾合龙. 厚煤层承压水上开采底板破坏规律数值模拟研究[J]. 煤炭技术,2015,34(2):109-111.

    LI Jinjun,LI Huaibin,GU Helong. Numerical simulation research on damage of thick coal seam mining above confined water on floor[J]. Coal Technology,2015,34(2):109-111.

    [7] 杨本水,黄天缘,宣以琼,等. 特厚煤层综放开采底板破坏及阻隔水性能分析[J]. 安徽建筑大学学报,2019,27(3):28-33.

    YANG Benshui,HUANG Tianyuan,XUAN Yiqiong,et al. Bottom destruction and barrier performance analysis of fully mechanized caving mining in extra-thick coal seam[J]. Journal of Anhui Jianzhu University,2019,27(3):28-33.

    [8] 范红伟,杨涛. 近距离特厚煤层采动影响下底板破坏及巷道稳定性研究[J]. 矿业研究与开发,2021,41(5):107-112.

    FAN Hongwei,YANG Tao. Research on floor failure and roadway stability under the influence of mining in near-distance extra-thick coal seam[J]. Mining Research and Development,2021,41(5):107-112.

    [9] 张郑伟. 特厚煤层综放开采对底板变形损伤的影响研究[J]. 同煤科技,2021(3):7-10.

    ZHANG Zhengwei. Study on influence of fully mechanized top coal caving mining on deformation and damage of floor in extra thick coal seam[J]. Datong Coal Science & Technology,2021(3):7-10.

    [10] 陈洋. 大同矿区特厚煤层采动底板变形及破坏深度研究[D]. 徐州: 中国矿业大学, 2021.

    CHEN Yang. Study on deformation and failure depth of mining-induced floor of extra-thick coal seam in Datong Mining Area[D]. Xuzhou: China University of Mining and Technology, 2021.

    [11] 高银贵,孔皖军,陈永春,等. 特厚煤层综放开采下工作面底板岩层破坏特征[J]. 能源环境保护,2021,35(6):68-75. DOI: 10.3969/j.issn.1006-8759.2021.06.010

    GAO Yingui,KONG Wanjun,CHEN Yongchun,et al. Study on the failure characteristics of the bottom slate layer in the working face of fully mechanized caving in ultra-thick coal seam[J]. Energy Environmental Protection,2021,35(6):68-75. DOI: 10.3969/j.issn.1006-8759.2021.06.010

    [12] 王升阳,张志巍. 厚煤层综放开采底板采动破坏及渗流特征[J]. 能源与节能,2022(4):10-14. DOI: 10.3969/j.issn.2095-0802.2022.04.003

    WANG Shengyang,ZHANG Zhiwei. Mining failure and seepage characteristics of fully mechanized caving floor in thick coal seams[J]. Energy and Energy Conservation,2022(4):10-14. DOI: 10.3969/j.issn.2095-0802.2022.04.003

    [13] 郭国强. 综放开采特厚煤层采场底板破坏规律研究[J]. 煤田地质与勘探,2022,50(8):53-61. DOI: 10.12363/issn.1001-1986.21.12.0774

    GUO Guoqiang. Floor failure law of extra-thick coal seam in fully mechanized caving mining[J]. Coal Geology & Exploration,2022,50(8):53-61. DOI: 10.12363/issn.1001-1986.21.12.0774

    [14] 于小鸽, 施龙青, 韩进, 等. 损伤底板破坏深度预测理论及应用[M]. 北京: 煤炭工业出版社, 2016.

    YU Xiaoge, SHI Longqing, HAN Jin, et al. Theory and application of failure depth prediction of damaged floor[M]. Beijing: China Coal Industry Publishing House, 2016.

    [15] 钱鸣高, 石平五. 矿山压力与岩层控制[M]. 徐州: 中国矿业大学出版社, 2003.

    QIAN Minggao, SHI Pingwu. Mine pressure and rock control[M]. Xuzhou: China University of Mining and Technology Press, 2003.

  • 期刊类型引用(27)

    1. 王洪磊,郭鑫,张亦凡,张俊升. 煤质煤量全面在线检测技术发展现状及应用进展. 煤炭科学技术. 2024(02): 219-237 . 百度学术
    2. 李亚东. 基于煤流检测实现带式输送机节能运行控制. 机械管理开发. 2024(03): 189-191 . 百度学术
    3. 葛世荣. 刮板输送机技术发展历程(四)——智能化成套装备. 中国煤炭. 2024(05): 1-12 . 百度学术
    4. 段效贤,苗笛,王以民,孙亚林. 一种基于B样条曲线拟合的带式输送机煤流量激光检测方法. 天津职业技术师范大学学报. 2024(02): 56-61 . 百度学术
    5. 普瑞,朱恩康,朱泽迪. 烟草带式输送机堵料预警及处理装置的研制. 今日制造与升级. 2024(07): 115-118+131 . 百度学术
    6. 贾文琪,蒋伟,季亮. 基于载荷分布检测的煤流运输协同控制系统设计. 煤矿机械. 2024(10): 15-19 . 百度学术
    7. 王桂忠,叶隆浩. 基于煤流量识别的带式输送机节能控制系统设计与研究. 煤矿机械. 2023(01): 14-17 . 百度学术
    8. 李松,史天长,张晓光. 基于调频连续波雷达的煤仓料位监测系统实验设计. 实验技术与管理. 2023(03): 71-75+81 . 百度学术
    9. 于海里,孙立超,左胜,陈大伟,曾祥玉,杜垣江. 基于双激光雷达的带式输送机煤流量检测系统. 工矿自动化. 2023(07): 27-34+59 . 本站查看
    10. 刘剑红. 选煤厂带式输送机智能调速系统研究. 山东煤炭科技. 2023(07): 161-163 . 百度学术
    11. 吴江伟,南柄飞. 工作面刮板输送机煤流状态识别方法. 工矿自动化. 2023(11): 60-66 . 本站查看
    12. 刘新龙,胡平,吕晨辉,赵安新,李学文. 基于激光红外线扫描的带式输送机煤流量实时检测技术. 煤炭技术. 2022(01): 217-219 . 百度学术
    13. 胡而已. 基于激光扫描的综放工作面放煤量智能监测技术. 煤炭科学技术. 2022(02): 244-251 . 百度学术
    14. 周爱民,叶飞,施旭东,赵培成. 基于超声波传感器的带式输送机烟丝瞬时流量监测系统的设计. 现代信息科技. 2022(03): 149-152 . 百度学术
    15. 姜玉峰,张立亚,李标,张子良. 基于单线激光雷达的带式输送机煤流量检测研究. 煤矿机械. 2022(08): 151-153 . 百度学术
    16. 王海军,王洪磊. 带式输送机智能化关键技术现状与展望. 煤炭科学技术. 2022(12): 225-239 . 百度学术
    17. 韩望月. 基于DSP的多级带式输送机智能控制系统设计. 煤炭技术. 2021(08): 184-186 . 百度学术
    18. 蒲志强. 矿井带式输送机胶带表面异物视频检测系统设计研究. 能源与环保. 2021(09): 29-35 . 百度学术
    19. 杨光耀,毛开江,胡而已,李梦雅. 过煤量激光图像智能监测技术研究. 中国煤炭. 2021(10): 49-55 . 百度学术
    20. 黄世顶,韩雷,常欣,吴在超,王永波,王强. 带式输送机节能控制方法浅析. 中国设备工程. 2020(09): 246-247 . 百度学术
    21. 毛清华,毛金根,马宏伟,张旭辉,李铮. 矿用带式输送机智能监测系统研究. 工矿自动化. 2020(06): 48-52+58 . 本站查看
    22. 李瑶,王义涵. 带式输送机煤流量自适应检测方法. 工矿自动化. 2020(06): 98-102 . 本站查看
    23. 郭伟东,李明,亢俊明,雷萌,朱美强. 基于机器视觉的矿井输煤系统优化节能控制. 工矿自动化. 2020(10): 69-75 . 本站查看
    24. 张少宾,蒋卫良,芮丰. 矿用带式输送机输送量测量方法现状及发展趋势. 工矿自动化. 2019(05): 100-103 . 本站查看
    25. 陶依贝,周宾,刘鹏飞,邱实,向鹏,贺文凯. 基于LabVIEW的物料体积流量实时测量系统. 仪表技术与传感器. 2018(03): 51-56+63 . 百度学术
    26. 张丽. 一种带式输送机物料流量多点超声检测方法. 工矿自动化. 2017(05): 62-65 . 本站查看
    27. 李纪栋,蒲绍宁,翟超,李祥千. 基于视频识别的带式输送机煤量检测与自动调速系统. 煤炭科学技术. 2017(08): 212-216 . 百度学术

    其他类型引用(17)

图(7)  /  表(3)
计量
  • 文章访问数:  230
  • HTML全文浏览量:  64
  • PDF下载量:  29
  • 被引次数: 44
出版历程
  • 收稿日期:  2022-05-06
  • 修回日期:  2022-08-08
  • 网络出版日期:  2022-06-26
  • 刊出日期:  2022-08-25

目录

    /

    返回文章
    返回