深部巷道围岩复合注浆加固技术

付玉凯, 王涛, 孙志勇, 岳延朋

付玉凯,王涛,孙志勇,等. 深部巷道围岩复合注浆加固技术[J]. 工矿自动化,2022,48(7):105-112. DOI: 10.13272/j.issn.1671-251x.2022040063
引用本文: 付玉凯,王涛,孙志勇,等. 深部巷道围岩复合注浆加固技术[J]. 工矿自动化,2022,48(7):105-112. DOI: 10.13272/j.issn.1671-251x.2022040063
FU Yukai, WANG Tao, SUN Zhiyong, et al. Composite grouting reinforcement technology for deep roadway surrounding rock[J]. Journal of Mine Automation,2022,48(7):105-112. DOI: 10.13272/j.issn.1671-251x.2022040063
Citation: FU Yukai, WANG Tao, SUN Zhiyong, et al. Composite grouting reinforcement technology for deep roadway surrounding rock[J]. Journal of Mine Automation,2022,48(7):105-112. DOI: 10.13272/j.issn.1671-251x.2022040063

深部巷道围岩复合注浆加固技术

基金项目: 国家自然科学基金项目(51804159);陕西省自然科学基础研究计划资助项目(2022JM-280 );天地科技股份有限公司科技创新创业资金专项项目(2019-TD-QN004)。
详细信息
    作者简介:

    付玉凯(1985— ),男,河南安阳人,副研究员,博士,主要从事巷道支护理论与技术研究工作,E-mail:543913570@qq.com

  • 中图分类号: TD265.4

Composite grouting reinforcement technology for deep roadway surrounding rock

  • 摘要: 针对深部巷道围岩复杂地质条件下单一注浆方式和注浆材料不能达到理想的注浆效果问题,提出了一种深部巷道围岩复合注浆加固技术。以山西某矿3210孤岛工作面为例,阐述了复合注浆加固技术原理及应用。首先,结合现场试验区域的地质力学测试结果、煤岩体物理力学参数等,计算3210回风巷各破裂区的范围;其次,基于围岩分区破裂特点,提出3步注浆工艺,即浅部低压渗透注浆、深部高压劈裂注浆和补充注浆,并根据各分区的范围确定3步注浆工艺中各个钻孔的深度;然后,根据各个分区中裂隙的发育程度和裂隙开度,选择相应的注浆材料:高渗透区宜采用无机水泥注浆材料,中等渗透区宜采用超细水泥注浆材料,低渗透区宜采用高分子化学浆液进行补注;最后,根据现场注浆试验,确定不同破裂区的注浆压力参数。采用注浆加固岩体锚固力、注浆加固岩体单轴抗压强度和围岩完整性3个指标综合判断3210回风巷注浆加固效果:采用复合注浆加固技术后,巷帮煤体锚固力提高144%,达到230 kN;顶板和巷帮围岩单轴抗压强度分别增加10.9%和18.5%,分别达到50.68 MPa和23.37 MPa;巷帮煤体波速提高15.2%,达到750 m/s。从注浆区域与未注浆区域围岩变形速率和变形量来看,复合注浆加固技术取得了良好效果。
    Abstract: The single grouting method and grouting material can not achieve an ideal grouting effect under the complex geological conditions of deep roadway surrounding rock. In order to solve this problem, a composite grouting reinforcement technology for deep roadway surrounding rock is proposed. Taking the 3210 isolated island working face of a mine in Shanxi Province as an example, this paper expounds on the principle and application of the composite grouting reinforcement technology. Firstly, combined with the geomechanical test results of the field test area and the physical and mechanical parameters of coal and rock mass, the range of each cracked zone of 3210 return air roadway is calculated. Secondly, based on the crack characteristics of surrounding rock zones, three-step grouting technology is proposed. The technology includes shallow low-pressure infiltration grouting, deep high-pressure cracking grouting and supplementary grouting. The depth of each borehole in the three-step grouting technology is determined according to the scope of each zone. Then, the corresponding grouting materials are selected according to the crack development degree and crack opening scale in each zone. The inorganic cement grouting materials should be used in high permeability zones. The ultra-fine cement grouting materials should be used in medium permeability zones. The polymer chemical grouting materials should be used for supplementary grouting in low permeability zones. Finally, according to the field grouting test, the grouting pressure parameters of different crack zones are determined. The grouting reinforcement effect of 3210 return air roadway is comprehensively judged by using three indexes. The three indexes include the anchoring force of grouting reinforcement rock mass, the uniaxial compressive strength of grouting reinforcement rock mass, and the integrity of surrounding rock mass. After adopting the composite grouting reinforcement technology, the anchoring force of the roadway side coal body is increased by 144%, reaching 230 kN. The uniaxial compressive strengths of the roof and roadway surrounding rock increase by 10.9% and 18.5% respectively, reaching 50.68 MPa and 23.37 MPa respectively. The wave velocity of the roadway side coal body increases by 15.2%, reaching 750 m/s. From the deformation rate and deformation amount of surrounding rock in grouted area and ungrouted area, the composite grouting reinforcement technology has achieved a good effect.
  • 图  1   3210工作面巷道布置

    Figure  1.   Roadway layout of 3210 working face

    图  2   3210工作面岩层柱状图

    Figure  2.   Rock stratum histogram of 3210 working face

    图  3   深部巷道围岩应力与破裂区

    Figure  3.   Surrounding rock stress and crack zone in deep roadway

    图  4   裂隙煤岩体不同破裂区域PQt特征曲线

    Figure  4.   P-Q-t characteristic curves for different crack zones of crack coal and rock mass

    图  5   围岩锚杆锚固力−位移曲线

    Figure  5.   Anchoring force-displacement curve of surrounding rock bolt

    图  6   围岩单轴抗压强度

    Figure  6.   Uniaxial compressive strengths of surrounding rock

    图  7   围岩波速

    Figure  7.   Wave velocities of surrounding rock

    表  1   3210回风巷各分区范围

    Table  1   Crack zone range of 3210 return air roadway m

    区域范围厚度半径
    巷道0~2.302.30
    完全破碎区2.30~6.143.846.14
    破碎降低区6.14~7.931.797.93
    塑性硬化区7.93~9.021.099.02
    类原岩区9.02~∞
    下载: 导出CSV

    表  2   高渗透区注浆材料配比参数

    Table  2   Proportioning parameters of grouting materials in high permeability zone

    注浆材料水灰比体积比水玻璃浓度
    普通42.5号水泥0.6~1
    普通42.5号水泥+水玻璃(0.6~1)∶11∶(1∶0.3)38~42 °Be′
    下载: 导出CSV

    表  3   超细水泥凝固后单轴抗压强度

    Table  3   Uniaxial compressive strength of superfine cement after solidification

    水灰比超细水泥凝固后单轴抗压强度/MPa
    t0 = 2 ht0 = 4 ht0 = 8 ht0 = 24 ht0 = 3 d
    0.6∶116.320.521.722.322.8
    0.8∶112.813.814.614.815.7
    1∶19.610.511.411.912.5
    1.2∶17.58.29.610.511.6
    下载: 导出CSV

    表  4   低渗透区注浆材料配比参数

    Table  4   Proportioning parameters of grouting materials in low permeability zone

    注浆材料体积比
    天地101号加固材料1∶1
    微纳米无机−有机复合改性材料1∶1
    下载: 导出CSV
  • [1] 谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报,2019,44(5):1283-1305. DOI: 10.13225/j.cnki.jccs.2019.6038

    XIE Heping. Research review of the state key research development program of China:deep rock mechanics and mining theory[J]. Journal of China Coal Society,2019,44(5):1283-1305. DOI: 10.13225/j.cnki.jccs.2019.6038

    [2] 康红普,徐刚,王彪谋,等. 我国煤炭开采与岩层控制技术发展40 a及展望[J]. 采矿与岩层控制工程学报,2019,1(2):7-39.

    KANG Hongpu,XU Gang,WANG Biaomou,et al. Forty years development and prospects of underground coal mining and strata control technologies in China[J]. Journal of Mining and Strata Control Engineering,2019,1(2):7-39.

    [3] 康红普,范明建,高富强,等. 超千米深井巷道围岩变形特征与支护技术[J]. 岩石力学与工程学报,2015,34(11):2227-2241. DOI: 10.13722/j.cnki.jrme.2015.0859

    KANG Hongpu,FAN Mingjian,GAO Fuqiang,et al. Deformation and support of rock roadway at depth more than 1000 meters[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(11):2227-2241. DOI: 10.13722/j.cnki.jrme.2015.0859

    [4] 张农,王保贵,郑西贵,等. 千米深井软岩巷道二次支护中的注浆加固效果分析[J]. 煤炭科学技术,2010,38(5):34-38,46.

    ZHANG Nong,WANG Baogui,ZHENG Xigui,et al. Analysis on grouting reinforcement results in secondary support of soft rock roadway in kilometre deep mine[J]. Coal Science and Technology,2010,38(5):34-38,46.

    [5] 刘泉声,卢超波,刘滨,等. 深部巷道注浆加固浆液扩散机理与应用研究[J]. 采矿与安全工程学报,2014,31(3):333-339.

    LIU Quansheng,LU Chaobo,LIU Bin,et al. Research on the grouting diffusion mechanism and its application of grouting reinforcement in deep roadway[J]. Journal of Mining & Safety Engineering,2014,31(3):333-339.

    [6] 康红普,冯志强. 煤矿巷道围岩注浆加固技术的现状与发展趋势[J]. 煤矿开采,2013,18(3):1-7. DOI: 10.3969/j.issn.1006-6225.2013.03.001

    KANG Hongpu,FENG Zhiqiang. Status and development tendency of roadway grunting reinforcement technology in coal mine[J]. Coal Mining Technology,2013,18(3):1-7. DOI: 10.3969/j.issn.1006-6225.2013.03.001

    [7] 李文洲,康红普,姜志云,等. 深部裂隙煤岩体变形破坏机理及高压注浆改性强化试验研究[J]. 煤炭学报,2021,46(3):912-923.

    LI Wenzhou,KANG Hongpu,JIANG Zhiyun,et al. Deformation failure mechanism of fractured deep coal-rock mass and high-pressure grouting modification strengthening testing[J]. Journal of China Coal Society,2021,46(3):912-923.

    [8] 李英明,赵呈星,刘增辉,等. 围岩承载层分层演化规律及“层–双拱”承载结构强度分析[J]. 岩石力学与工程学报,2020,39(2):217-227. DOI: 10.13722/j.cnki.jrme.2019.0858

    LI Yingming,ZHAO Chengxing,LIU Zenghui,et al. Research on layered evolution law of surrounding rock bearing layers and strength analysis of 'layer-double arch' bearing structure[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(2):217-227. DOI: 10.13722/j.cnki.jrme.2019.0858

    [9] 付玉凯,王涛,孙志勇,等. 复合软岩巷道长短锚索层次控制技术及实践[J]. 采矿与安全工程学报,2021,38(2):237-245. DOI: 10.13545/j.cnki.jmse.2020.0401

    FU Yukai,WANG Tao,SUN Zhiyong,et al. Layered control technology and practice of long and short anchor cable in composite soft rock roadway[J]. Journal of Mining & Safety Engineering,2021,38(2):237-245. DOI: 10.13545/j.cnki.jmse.2020.0401

    [10] 张俊文. 深部大规模松软围岩巷道破坏分区理论分析[J]. 中国矿业大学学报,2017,46(2):292-299. DOI: 10.13247/j.cnki.jcumt.000649

    ZHANG Junwen. Theoretical analysis on failure zone of surrounding rock in deep large-scale soft rock roadway[J]. Journal of China University of Mining & Technology,2017,46(2):292-299. DOI: 10.13247/j.cnki.jcumt.000649

    [11] 张顶立,孙锋,李鹏飞. 海底隧道复合注浆机制研究及工程应用[J]. 岩石力学与工程学报,2012,31(3):445-452. DOI: 10.3969/j.issn.1000-6915.2012.03.002

    ZHANG Dingli,SUN Feng,LI Pengfei. Mechanism of composite grouting in subsea tunnel and its application[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(3):445-452. DOI: 10.3969/j.issn.1000-6915.2012.03.002

    [12] 张顶立,孙振宇,陈铁林. 海底隧道复合注浆技术及其工程应用[J]. 岩石力学与工程学报,2019,38(6):1102-1116.

    ZHANG Dingli,SUN Zhenyu,CHEN Tielin. Composite grouting technology for subsea tunnels and its engineering application[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(6):1102-1116.

    [13]

    EKLUND D,STILLE H. Penetrability due to filtration tendency of cement-based grouts[J]. Tunnelling and Underground Space Technology,2008,23(4):389-398. DOI: 10.1016/j.tust.2007.06.011

  • 期刊类型引用(5)

    1. 刘晓阳,刘旭,陈伟,王文清. 基于改进残差神经网络的滚动轴承故障检测. 计算机仿真. 2024(05): 81-87 . 百度学术
    2. 李晓旭. 结合Alexnet和极限学习机的网络模型的研究. 网络安全技术与应用. 2022(01): 37-38 . 百度学术
    3. 刁英,王亚慧. 煤炭运输设备故障自动识别系统研究. 能源与环保. 2022(04): 228-233 . 百度学术
    4. 吴冬梅,王福齐,李贤功,唐润,张新建. 轴承智能故障诊断. 工矿自动化. 2022(09): 49-55 . 本站查看
    5. 杜菲,马天兵,胡伟康,吕英辉,彭猛. 基于小波变换和改进卷积神经网络的刚性罐道故障诊断. 工矿自动化. 2022(09): 42-48+62 . 本站查看

    其他类型引用(0)

图(7)  /  表(4)
计量
  • 文章访问数:  214
  • HTML全文浏览量:  29
  • PDF下载量:  18
  • 被引次数: 5
出版历程
  • 收稿日期:  2022-04-20
  • 修回日期:  2022-07-15
  • 网络出版日期:  2022-06-27
  • 刊出日期:  2022-08-08

目录

    /

    返回文章
    返回