基于最大熵卡尔曼滤波算法的液压支架调直方法

宋单阳, 卢春贵, 陶心雅, 杨金衡, 王培恩, 郑文强, 宋建成

宋单阳,卢春贵,陶心雅,等. 基于最大熵卡尔曼滤波算法的液压支架调直方法[J]. 工矿自动化,2022,48(11):119-124. DOI: 10.13272/j.issn.1671-251x.2022020030
引用本文: 宋单阳,卢春贵,陶心雅,等. 基于最大熵卡尔曼滤波算法的液压支架调直方法[J]. 工矿自动化,2022,48(11):119-124. DOI: 10.13272/j.issn.1671-251x.2022020030
SONG Danyang, LU Chungui, TAO Xinya, et al. Hydraulic support straightening method based on maximum correntropy Kalman filtering algorithm[J]. Journal of Mine Automation,2022,48(11):119-124. DOI: 10.13272/j.issn.1671-251x.2022020030
Citation: SONG Danyang, LU Chungui, TAO Xinya, et al. Hydraulic support straightening method based on maximum correntropy Kalman filtering algorithm[J]. Journal of Mine Automation,2022,48(11):119-124. DOI: 10.13272/j.issn.1671-251x.2022020030

基于最大熵卡尔曼滤波算法的液压支架调直方法

基金项目: 山西省重点研发计划项目(202102010101005)。
详细信息
    作者简介:

    宋单阳(1992—),男,山西太原人,博士研究生,研究方向为矿用智能电器技术,E-mail:136862475@qq.com

  • 中图分类号: TD355.4

Hydraulic support straightening method based on maximum correntropy Kalman filtering algorithm

  • 摘要: 现有液压支架调直方法受到传感器测量误差和液压支架推移误差的影响,使得调直误差较大;且在非高斯量测噪声环境下,传统基于卡尔曼滤波(KF)算法的调直方法对液压支架轨迹的预测准确度低,无法达到理想的调直效果。针对上述问题,提出了一种基于最大熵卡尔曼滤波(MCKF)算法的液压支架调直方法。首先根据液压支架的位置坐标和工作面推进方向确定调直参考直线;然后根据液压支架调直原理构建液压支架线性推移系统的状态方程和观测方程,经MCKF算法处理后得到液压支架推移后的预测轨迹;最后根据液压支架预测轨迹与调直参考直线解算出每架液压支架的推移距离补偿量,从而达到调直目的。仿真结果表明:与现有基于KF算法的调直方法相比,基于MCKF算法的液压支架调直方法能够有效降低量测噪声和过程噪声对液压支架直线度的影响,特别当量测噪声服从非高斯分布时,该方法的均方误差平均值仅为4.76 mm,远小于基于KF算法的调直方法的均方误差,可以更加准确地预测液压支架的真实轨迹,使调直后液压支架的直线度误差降低了36%,有效提高了调直精度,且液压支架直线度误差只与本次调直过程有关,有效避免了累计误差。
    Abstract: The existing hydraulic support straightening method is affected by the sensor measurement error and the hydraulic support moving error, which make the straightening error larger. In the non-Gaussian measurement noise environment, the traditional Kalman filter (KF) straightening method has low accuracy in predicting the trajectory of the hydraulic support, and cannot achieve the ideal straightening effect. In order to solve the above problems, a hydraulic support straightening method based on maximum correntropy Kalman filtering (MCKF) algorithm is proposed. Firstly, the straightening reference line is determined according to the position coordinates of the hydraulic support and the advancing direction of the working face. Secondly, the state equation and observation equation of the linear moving system of hydraulic support is constructed according to the straightening principle of hydraulic support. After MCKF algorithm processing, the predicted trajectory of hydraulic support after moving is obtained. Finally, the moving distance compensation amount of each hydraulic support is calculated according to the predicted trajectory of the hydraulic support and the straightening reference line, so as to achieve the purpose of straightening. The simulation results show that the hydraulic support straightening method based on the MCKF algorithm can effectively reduce the influence of measurement noise and process noise on the straightness of the hydraulic support compared with the existing straightening method based on the KF algorithm. When the measurement noise obeys non-Gaussian distribution, the average of mean square error of the method is only 4.76 mm, which is far less than the mean square error of the straightening method based on the KF algorithm. The real trajectory of the hydraulic support can be predicted more accurately, which reduces the straightening error of the hydraulic support by 36% after straightening. The method thus effectively improves the straightening precision. The straightening error of the hydraulic support is only related to this straightening process, which effectively avoids the accumulated error.
  • 液压支架作为综采工作面的重要生产设备之一,不仅起着支撑顶板的作用,还与采煤机、刮板输送机等综采设备互相配合、协同作业,将工作面不断向前推进。工作面煤壁、刮板输送机和液压支架都保持直线状态是综采工作面绿色高效自动化生产的技术保障。然而在实际生产过程中,由于测量误差、推移误差、累计误差等原因,液压支架排列并非在一条直线上,这样会直接影响刮板输送机直线度,从而影响综采工作面生产效率、增大能源消耗、加速设备损坏,另外还存在极大的安全隐患[1-2]。因此,如何实现液压支架直线度精确检测、快速调直,是提高综采工作面三机设备运行效率,加速综采工作面自动化建设亟需解决的关键问题[3]

    近年来,煤矿领域许多学者对液压支架的调直方法进行了大量研究。文献[4]通过在架间行走机器人上布置传感器来测量液压支架底座多维位置偏移数据,从而获得液压支架直线度信息,但该方法需要改装液压支架的人行板和布置辅助测量板,不适宜在井下实际使用。文献[5]基于支持向量机和遗传算法构建了液压支架调直系统模型,但该模型容易受到顶板压力和乳化液泵站压力的影响,对压力传感器的精度要求比较高。文献[6-9]主要是通过在液压支架之间安装大量传感器来判断液压支架的相对位置,通过电液控制系统控制液压支架进行“拉架”和“推溜”,以实现液压支架之间的位置调整,从而控制整个工作面液压支架群的直线度;这些方法的缺点是传感器数量多,极易产生累计误差,且在液压支架调直过程中没有考虑推移系统误差的影响,无法达到理想的调直效果。文献[10]通过对液压支架超调量进行不完全补偿来实现液压支架的调直,但当液压支架推移系统的系统噪声为非高斯噪声时,该方法是否具有可行性有待验证。文献[11]提出了一种基于卡尔曼滤波(Kalman Filter,KF)的刮板输送机调直方法,通过实时监测刮板输送机中部槽的位置完成对刮板输送机的调直,最后通过电液控制系统控制液压支架进行“拉架”动作,实现液压支架直线度的调整,但该方法易受系统非高斯量测噪声的影响。

    综上可知,现有液压支架调直方法受到传感器测量误差和液压支架推移误差的影响,使得调直误差较大;在非高斯量测噪声环境下,传统基于KF算法的调直方法对液压支架轨迹的预测准确度低,无法达到理想的调直效果。针对上述问题,本文在KF迭代过程中引入最大熵准则(Maximum Correntropy Criterion,MCC)处理非高斯量测噪声,提出了一种基于最大熵卡尔曼滤波(MCC Kalman Filter,MCKF)算法的液压支架调直方法,以提高调直精度。

    基于MCKF算法的液压支架调直方法的基本原理:首先根据液压支架的位置坐标和工作面推进方向确定调直参考直线;然后构建液压支架线性推移系统的状态方程和观测方程,经MCKF算法处理后得到液压支架推移后的预测轨迹;最后根据液压支架预测轨迹与调直参考直线解算出每架液压支架的推移距离补偿量,从而达到调直目的。

    液压支架调直过程如图1所示。采煤机完成第k−1次截割后,液压支架的实际轨迹为$ {T}_{{\rm{D}}}(k-1) $,取实际轨迹$ {T}_{{\rm{D}}}(k-1) $上最滞后点向工作面推进方向作垂线得到参考直线$ {L}_{{\rm{C}}}(k-1) $,将参考直线$ {L}_{{\rm{C}}}(k-1) $向工作面推进方向平移距离h即可得到采煤机第k次截割时的液压支架理想轨迹$ {T}_{{\rm{G}}}\left(k\right) $。取理想轨迹$ {T}_{{\rm{G}}}\left(k\right) $与实际轨迹$ {T}_{{\rm{D}}}(k-1) $上各移架点的差值作为液压支架第k次推移距离,在检测误差和推移误差的影响下推移液压支架,形成下一次液压支架的轨迹$ {T}_{{\rm{D}}}\left(k\right) $。反复循环以上过程,不断对液压支架的直线度进行修正,使其最终稳定在一定范围内。

    图  1  液压支架调直过程
    Figure  1.  Hydraulic support straightening process

    综采工作面液压支架推移系统属于线性系统,其状态方程和观测方程可以反映液压支架的推移轨迹状态,本文利用MCKF算法对液压支架推移系统的状态变量进行更新,以实现液压支架轨迹预测,通过引入MCC获得滤波误差的高阶统计信息,使系统跟踪性能得到极大改善,提高噪声滤除效果和调直精度。

    对于给定的2个随机变量$ U $$ V $,其相关熵定义如下:

    $$ W\left(U\text{,}V\right)={\displaystyle \iint \varphi \left(u\text{,}v\right)\rho \left(u\text{,}v\right){\rm{d}}u{\rm{d}}v} $$ (1)

    式中:$\varphi (u,v)$为核函数,uv为随机变量UV的具体值;$\; \rho (u,v)$为随机变量$ U $$ V $的联合概率密度函数。

    $\varphi (u,v)$核函数具有线性、多项式、高斯和指数核函数等多种形式[12-13],本文选择常用的高斯核函数。

    $$ \varphi \left(u\text{,}v\right)={G}_{\sigma }\left(t\right)={\rm{exp}}\left(-\frac{{t}^{2}}{2{\sigma }^{2}}\right) $$ (2)

    式中:$ {G}_{\sigma }\left(\right) $为带宽为$ \mathrm{\sigma } $的核函数;$ t=u-v\mathrm{。} $

    MCC不受高斯分布假设的影响[14-15],本文在KF迭代过程中引入MCC,在非高斯噪声环境下,使得液压支架推移系统的跟踪性能得到极大改善。

    液压支架推移系统的状态方程和观测方程可以描述为

    $$ \left\{ \begin{gathered} {\boldsymbol{Y}}\left( {k + 1} \right) = {\boldsymbol{AY}}\left( k \right) + {\boldsymbol{BD}}\left( k \right) + {\boldsymbol{w}}\left( k \right) \\ {\boldsymbol{Z}}\left( k \right) = {\boldsymbol{HY}}\left( k \right) + {\boldsymbol{r}}\left( k \right) \\ \end{gathered} \right. $$ (3)

    式中:$ \boldsymbol{A} $为转移矩阵;$ {\boldsymbol{Y}}\left(k\right) $为采煤机第k−1次割煤后液压支架在推进方向上的坐标;$ \boldsymbol{B} $为控制矩阵;$ {\boldsymbol{D}}\left(k\right) $为采煤机第k次割煤后液压支架的推进距离;$ \boldsymbol{w}\left(k\right) $为过程噪声;$ {\boldsymbol{Z}}\left(k\right) $为采煤机第k−1次割煤后液压支架在推进方向的测量坐标;$ \boldsymbol{H} $为测量矩阵;$ \boldsymbol{r}\left(k\right) $为量测噪声。

    KF算法的递推表达式是通过最小化系统代价函数实现的。KF算法的代价函数为

    $$ \begin{split} {J_{{\rm{KF}}}} =& {\left( {{\boldsymbol{Y}}\left( k \right) - {\boldsymbol{Y}}\left( {k{\text{|}}k - 1} \right)} \right)^{\rm{T}}}{\boldsymbol{P}}{\left( {k{\text{|}}k - 1} \right)^{ - 1}} \times \\& \left( {{\boldsymbol{Y}}\left( k \right) - {\boldsymbol{Y}}\left( {k{\text{|}}k - 1} \right)} \right) + {\left( {{\boldsymbol{HY}}\left( k \right) - {\boldsymbol{Z}}\left( k \right)} \right)^{\rm{T}}}\times \\& {\boldsymbol{R}}{\left( k \right)^{ - 1}}\left( {{\boldsymbol{HY}}\left( k \right) - {\boldsymbol{Z}}\left( k \right)} \right) \end{split} $$ (4)

    式中:${\boldsymbol{Y}}\left( {k{\text{|}}k - 1} \right) $为状态变量预测值;$ \boldsymbol{P}\left(k\right|k-1) $为预测误差协方差矩阵;$ \boldsymbol{R}\left(k\right) $为量测噪声的协方差矩阵。

    为了加强KF算法在非高斯量测噪声下的跟踪效果,将相关熵的概念引入代价函数的量测部分。定义$ {{\boldsymbol{e}}}_{k}={\left({\boldsymbol{R}}\left(k\right)\right)}^{-1/2}({\boldsymbol{HY}}\left(k|k-1\right)-{\boldsymbol{Z}}(k\left)\right) $,根据式(4),可得MCKF算法的代价函数:

    $$ \begin{split} {J}_{{\rm{MCKF}}}=&{\left({\boldsymbol{Y}}\left(k\right)-{\boldsymbol{Y}}\left(k\text{|}k-1\right)\right)}^{{\rm{T}}}{\boldsymbol{P}}{\left(k\text{|}k-1\right)}^{-1}\times \\& \left({\boldsymbol{Y}}\left(k\right)-{\boldsymbol{Y}}\left(k\text{|}k-1\right)\right)-{\sigma }^{2}{\displaystyle \sum _{i=1}^{m}{G}_{\sigma }\left({{\boldsymbol{e}}}_{k\text{,}i}\right)} \end{split}$$ (5)

    式中$ {{\boldsymbol{e}}}_{k,i}\mathrm{为}{{\boldsymbol{e}}}_{k} $的第$ i $$i=\mathrm{1,2},\cdots ,m,m$为分量个数)个分量。

    对式(5)在$ {\boldsymbol{Y}}\left(k\right) $处求导,并令其为零,可得

    $$ \begin{split} & {\boldsymbol{P}}{\left( {k{\text{|}}k - 1} \right)^{ - 1}}\left( {{\boldsymbol{Y}}\left( k \right) - {\boldsymbol{Y}}\left( {k{\text{|}}k - 1} \right)} \right) + \\& {{\boldsymbol{H}}^{\rm{T}}}{\left( {{\boldsymbol{R}}\left( k \right)} \right)^{{{ - }}{\rm{T}}/2}}{\boldsymbol{\psi}} \left( k \right){\left( {{\boldsymbol{R}}\left( k \right)} \right)^{{{ - }}1/2}} \left( {{\boldsymbol{HY}}\left( k \right) - {\boldsymbol{Z}}\left( k \right)} \right){{ = }}0 \end{split} $$ (6)

    式中${\boldsymbol{\psi}} \left(k\right) $为权矩阵,$ {\boldsymbol{\psi}} \left(k\right)={\rm{diag}}\left({G}_{\sigma }\right({{\boldsymbol{e}}}_{k,i}\left)\right) $

    式(6)可以视为JMCKF$ {\boldsymbol{Y}}\left(k\right) $处的导数:

    $$ \begin{split} {J_{{\rm{MCKF}}}} =& {\left( {{\boldsymbol{Y}}\left( k \right) - {\boldsymbol{Y}}\left( {k{\text{|}}k - 1} \right)} \right)^{\rm{T}}}{\boldsymbol{P}}{\left( {k{\text{|}}k - 1} \right)^{ - 1}} \times \\& \left( {{\boldsymbol{Y}}\left( k \right) - {\boldsymbol{Y}}\left( {k{\text{|}}k - 1} \right)} \right) + {\left( {{\boldsymbol{HY}}\left( k \right) - {\boldsymbol{Z}}\left( k \right)} \right)^{\rm{T}}} \times \\& \tilde {\boldsymbol{R}}{\left( k \right)^{ - 1}}\left( {{\boldsymbol{HY}}\left( k \right) - {\boldsymbol{Z}}\left( k \right)} \right) \end{split} $$ (7)

    式中$ \tilde{{\boldsymbol{R}}}\left(k\right)={\left({\boldsymbol{R}}\right(k\left)\right)}^{1/2}{\left({\boldsymbol{\psi}} \right(k\left)\right)}^{-1}{\left({\boldsymbol{R}}\right(k\left)\right)}^{{\rm{T}}/2} $

    对比式(4)和式(7)可看出,MCKF算法在KF算法的基础上对量测噪声的协方差进行了修改,从而改善系统的跟踪性能。

    基于线性系统方程,MCKF算法运算步骤如下:

    (1) 初始化:根据MCKF算法迭代要求,选择合适的核函数带宽$ \mathrm{\sigma } $,设定状态变量初始值为$ {\boldsymbol{Y}}\left(0\right) $和对应的误差协方差矩阵为$ {\boldsymbol{P}}\left(0\right) $

    (2) 状态变量预测计算:

    $$ {\boldsymbol{Y}}\left( {k{\text{|}}k - 1} \right) = {\boldsymbol{AY}}\left( k \right) + {\boldsymbol{BD}}\left( k \right) $$ (8)

    (3) 预测误差协方差矩阵计算:

    $$ {\boldsymbol{P}}\left( {k{\text{|}}k - 1} \right) = {\boldsymbol{AP}}\left( {k - 1|k - 1} \right){{\boldsymbol{A}}^{\rm{T}}} + {\boldsymbol{Q}} $$ (9)

    式中$ {\boldsymbol{Q}} $为过程噪声的方差。

    (4) 修改量测噪声协方差矩阵:MCKF算法首先利用MCC处理非高斯量测噪声,根据状态变量预测值的信息计算$ {{\boldsymbol{e}}}_{k} $,然后基于$ {{\boldsymbol{e}}}_{k} $计算权矩阵$ {\boldsymbol{\psi}} \left(k\right) $,最后用权矩阵修改量测噪声协方差矩阵:

    $$ \left\{\begin{array}{l}{{\boldsymbol{e}}}_{k}={\left({\boldsymbol{R}}\left(k\right)\right)}^{-1/2}\left({\boldsymbol{HY}}\left(k\text{|}k-1\right)-{\boldsymbol{Z}}\left(k\right)\right)\\ {\boldsymbol{\psi}} \left(k\right)={\rm{diag}}\left({G}_{\sigma }\left({{\boldsymbol{e}}}_{k\text{,}i}\right)\right)\\ \tilde{{\boldsymbol{R}}}\left(k\right)={\left({\boldsymbol{R}}\left(k\right)\right)}^{1/2}{\left({\boldsymbol{\psi}} \left(k\right)\right)}^{-1}{\left({\boldsymbol{R}}\left(k\right)\right)}^{{\rm{T}}/2}\end{array}\right. $$ (10)

    (5) 滤波增益矩阵计算:

    $$ {\boldsymbol{K}}\left( k \right) = {\boldsymbol{P}}\left( {k{\text{|}}k - 1} \right){{\boldsymbol{H}}^{\rm{T}}} {\left( {{\boldsymbol{HP}}\left( {k{\text{|}}k - 1} \right){{\boldsymbol{H}}^{\rm{T}}} + \tilde {\boldsymbol{R}}\left( k \right)} \right)^{ - 1}} $$ (11)

    (6) 状态更新:

    $$ {\boldsymbol{Y}}\left( k \right) = {\boldsymbol{Y}}\left( {k{\text{|}}k - 1} \right) + {\boldsymbol{K}}\left( k \right) ({\boldsymbol{Z}}\left( k \right) - {\boldsymbol{HY}}(k|k - 1)) $$ (12)

    (7) 误差协方差矩阵更新:

    $$ {\boldsymbol{P}}\left( {k{\text{|}}k} \right) = \left( {{\boldsymbol{I}} - {\boldsymbol{K}}\left( k \right){\boldsymbol{H}}} \right){\boldsymbol{P}}\left( {k|k - 1} \right) $$ (13)

    式中I为单位矩阵。

    与KF算法相比,MCKF算法基于MCC修改量测噪声协方差矩阵,使其在非高斯噪声条件下改善滤波效果,从而解决了非高斯噪声下液压支架调直精度低的问题。

    为了检验基于MCKF算法的液压支架调直方法的有效性,基于Matlab对液压支架调直过程进行了数值仿真。为了简化计算,假设在东北天坐标系下,液压支架沿东方向排列,推进方向向北。以100架液压支架作为仿真对象,选择液压支架中心距为1.5 m,标准推移距离为0.8 m。由于井下液压支架过程噪声和量测噪声的方差变化范围较大,为0~1,本文选用该变化范围内的噪声方差数据,在量测噪声分别为高斯噪声和非高斯噪声环境下进行仿真实验,并与基于KF算法的调直方法进行对比。

    假设液压支架过程噪声$ {\delta }_{{\rm{a}}} $和量测噪声$ {\delta }_{{\rm{b}}} $为随机噪声,相互独立并服从高斯分布($ {\delta }_{{\rm{a}}} ~ N(0,0.006)$$ {\delta }_{{\rm{b}}} ~ N(0,0.006)) $。液压支架的初始轨迹如图2所示,将液压支架推移100次,得到液压支架的推移轨迹,如图3所示。选择预测轨迹数据与真实轨迹数据之间的均方误差(Mean Square Error,MSE)作为衡量液压支架轨迹预测效果的评判依据,MSE越小,说明预测效果越好。由图3可看出,在高斯噪声条件下,KF算法的预测轨迹与真实轨迹之间的MSE为1.78 mm,MCKF算法的预测轨迹与真实轨迹之间的MSE为1.26 mm,可看出基于KF算法和MCKF算法的调直方法对于液压支架直线度检测均有很好的效果。

    图  2  高斯噪声条件下液压支架初始轨迹
    Figure  2.  Initial trajectory of hydraulic support under condition of Gaussian noise
    图  3  高斯噪声条件下液压支架推移轨迹
    Figure  3.  Moving trajectory of hydraulic support under condition of Gaussian noise

    在液压支架推移100次过程中,可以得到KF算法预测轨迹与真实轨迹之间的MSE及MCKF算法预测轨迹与真实轨迹之间的MSE随推移次数变化的曲线,如图4所示。KF算法的MSE平均值为2.36 mm,MCKF算法的MSE平均值为1.70 mm。2种算法的预测精度均较高,但MCKF算法的预测结果更加逼近实际值。

    图  4  高斯噪声条件下KF算法与MCKF算法预测轨迹的MSE
    Figure  4.  Mean square errors of prediction trajectory of KF algorithm and MCKF algorithm under condition of Gaussian noise

    选取液压支架在北方向坐标最大值与最小值之差作为液压支架最大直线度误差。在高斯噪声条件下,利用KF算法和MCKF算法对液压支架直线度进行轨迹预测后,推移液压支架可以得到其最大直线度误差随推移次数变化的曲线,如图5所示。可看出KF算法的预测轨迹直线度误差和MCKF算法的预测轨迹直线度误差均为38 mm左右,相比于接近100 mm的液压支架初始轨迹直线度误差,2种算法的调直效果均很好,说明MCKF算法在高斯噪声环境下的预测效果也较好。

    图  5  高斯噪声条件下液压支架直线度误差随推移次数变化曲线
    Figure  5.  Variation curves of the straightness error of hydraulic support with moving number under condition of Gaussian noise

    假设液压支架过程噪声$ {\delta }_{{\rm{a}}} $服从高斯分布,量测噪声$ {\delta }_{{\rm{b}}} $为非高斯噪声,即${\delta }_{{\rm{b}}}~0.8N(0,0.006)+0.2N(0,0.03)$。液压支架的初始轨迹如图6所示,将液压支架推移100次,得到液压支架的推移轨迹如图7所示。在非高斯噪声条件下,KF算法的预测轨迹与真实轨迹之间的MSE为16.82 mm,MCKF算法的预测轨迹与真实轨迹之间的MSE为4.35 mm,可以看出,相比KF算法,MCKF算法对液压支架轨迹的估计一致性相对较好。

    图  6  非高斯噪声条件下液压支架初始轨迹
    Figure  6.  Initial trajectory of hydraulic support under condition of non-Gaussian noise
    图  7  非高斯噪声条件下液压支架推移轨迹
    Figure  7.  Moving trajectory of hydraulic support under condition of non-Gaussian noise

    液压支架推移100次,可以得到KF算法预测轨迹与真实轨迹之间的MSE及MCKF算法预测轨迹与真实轨迹之间的MSE随推移次数变化的曲线,如图8所示。KF算法的MSE平均值为16.74 mm,MCKF算法的MSE平均值为4.76 mm。MCKF算法的MSE远远小于KF算法的MSE,能更加真实地反映液压支架的真实状态。

    图  8  非高斯噪声条件下KF算法预测轨迹与MCKF算法预测轨迹的MSE
    Figure  8.  Mean square errors of prediction trajectory of KF algorithm and MCKF algorithm under condition of non-Gaussian noise

    在非高斯噪声条件下,利用KF算法和MCKF算法对液压支架直线度进行轨迹预测后,推移液压支架可以得到其最大直线度误差随推移次数变化的曲线,如图9所示。可看出KF算法的预测轨迹直线度误差为72 mm左右,MCKF算法的预测轨迹直线度误差为46 mm左右。相比于接近100 mm的液压支架初始轨迹直线度误差,经MCKF算法滤波后的轨迹比经KF算法滤波后的轨迹直线度误差减小了36%,说明基于MCKF算法的调直方法的效果比基于KF算法的调直方法更理想。此外,还可看出,液压支架调直误差不受推移次数的影响,即直线度误差只与本次调直过程有关,与之前的调直过程无关,有效避免了累计误差。

    图  9  非高斯噪声条件下液压支架直线度误差随推移次数变化曲线
    Figure  9.  Variation curves of the straightness error of hydraulic support with moving number under condition of non-Gaussian noise

    (1) 提出了一种基于MCKF算法的液压支架调直方法,通过MCKF算法精确预测液压支架推移后的轨迹,以计算液压支架下一次的推移距离,根据两者间的差值进行调直,解决了非高斯量测噪声干扰下传统KF算法对液压支架直线度检测精度低,导致调直效果差的问题。

    (2) 仿真结果表明:与基于KF算法的调直方法相比,基于MCKF算法的液压支架调直方法能够有效降低量测噪声和过程噪声对液压支架直线度的影响,特别当量测噪声服从非高斯分布时,该方法的MSE平均值仅为4.76 mm,远小于基于KF算法的调直方法的MSE,能够更加准确地预测液压支架直线度。MCKF算法的预测轨迹直线度误差比KF算法的预测轨迹直线度误差减小了36%,调直效果更佳,且液压支架的直线度误差只与本次调直过程有关,而与之前的调直过程无关,有效避免了累计误差。

  • 图  1   液压支架调直过程

    Figure  1.   Hydraulic support straightening process

    图  2   高斯噪声条件下液压支架初始轨迹

    Figure  2.   Initial trajectory of hydraulic support under condition of Gaussian noise

    图  3   高斯噪声条件下液压支架推移轨迹

    Figure  3.   Moving trajectory of hydraulic support under condition of Gaussian noise

    图  4   高斯噪声条件下KF算法与MCKF算法预测轨迹的MSE

    Figure  4.   Mean square errors of prediction trajectory of KF algorithm and MCKF algorithm under condition of Gaussian noise

    图  5   高斯噪声条件下液压支架直线度误差随推移次数变化曲线

    Figure  5.   Variation curves of the straightness error of hydraulic support with moving number under condition of Gaussian noise

    图  6   非高斯噪声条件下液压支架初始轨迹

    Figure  6.   Initial trajectory of hydraulic support under condition of non-Gaussian noise

    图  7   非高斯噪声条件下液压支架推移轨迹

    Figure  7.   Moving trajectory of hydraulic support under condition of non-Gaussian noise

    图  8   非高斯噪声条件下KF算法预测轨迹与MCKF算法预测轨迹的MSE

    Figure  8.   Mean square errors of prediction trajectory of KF algorithm and MCKF algorithm under condition of non-Gaussian noise

    图  9   非高斯噪声条件下液压支架直线度误差随推移次数变化曲线

    Figure  9.   Variation curves of the straightness error of hydraulic support with moving number under condition of non-Gaussian noise

  • [1] 罗开成,常亚军,高有进. 综采工作面智能开采关键技术实践[J]. 煤炭科学技术,2020,48(7):73-79. DOI: 10.13199/j.cnki.cst.2020.07.006

    LUO Kaicheng,CHANG Yajun,GAO Youjin. Key technology practice of intelligent mining in fully-mechanized coal mining face[J]. Coal Science and Technology,2020,48(7):73-79. DOI: 10.13199/j.cnki.cst.2020.07.006

    [2] 李首滨,李森,张守祥,等. 综采工作面智能感知与智能控制关键技术与应用[J]. 煤炭科学技术,2021,49(4):28-39. DOI: 10.13199/j.cnki.cst.2021.04.004

    LI Shoubin,LI Sen,ZHANG Shouxiang,et al. Key technology and application of intelligent perception and intelligent control in fully mechanized mining face[J]. Coal Science and Technology,2021,49(4):28-39. DOI: 10.13199/j.cnki.cst.2021.04.004

    [3] 葛世荣,郝尚清,张世洪,等. 我国智能化采煤技术现状及待突破关键技术[J]. 煤炭科学技术,2020,48(7):28-46. DOI: 10.13199/j.cnki.cst.2020.07.002

    GE Shirong,HAO Shangqing,ZHANG Shihong,et al. Status of intelligent coal mining technology and potential key technologies in China[J]. Coal Science and Technology,2020,48(7):28-46. DOI: 10.13199/j.cnki.cst.2020.07.002

    [4] 白晋铭,王然风,付翔. 基于架间行走机器人的液压支架直线度测量方法[J]. 工矿自动化,2019,45(1):45-51. DOI: 10.13272/j.issn.1671-251x.2018060008

    BAI Jinming,WANG Ranfeng,FU Xiang. A straightness measurement method of hydraulic support based on inter supports walking robot[J]. Industry and Mine Automation,2019,45(1):45-51. DOI: 10.13272/j.issn.1671-251x.2018060008

    [5] 胡波,廉自生. 基于支持向量机和遗传算法的液压支架调直系统研究[J]. 煤矿机械,2014,35(10):39-41. DOI: 10.13436/j.mkjx.201410019

    HU Bo,LIAN Zisheng. Study on hydraulic support straightening system based on support vector machine and genetic algorithm[J]. Coal Mine Machinery,2014,35(10):39-41. DOI: 10.13436/j.mkjx.201410019

    [6] 张旭辉,王冬曼,杨文娟. 基于视觉测量的液压支架位姿检测方法[J]. 工矿自动化,2019,45(3):56-60. DOI: 10.13272/j.issn.1671-251x.2018090039

    ZHANG Xuhui,WANG Dongman,YANG Wenjuan. Position detection method of hydraulic support based on vision measurement[J]. Industry and Mine Automation,2019,45(3):56-60. DOI: 10.13272/j.issn.1671-251x.2018090039

    [7] 牛剑峰. 基于视频巡检的综采工作面无人化关键技术研究[J]. 煤炭科学技术,2019,47(10):141-146. DOI: 10.13199/j.cnki.cst.2019.10.018

    NIU Jianfeng. Research on unmanned key technology of fully-mechanized mining face based on video inspection[J]. Coal Science and Technology,2019,47(10):141-146. DOI: 10.13199/j.cnki.cst.2019.10.018

    [8] 杨学军,王然风,王怀法. 液压支架直线度检测机器人激光定位矩阵研究[J]. 工矿自动化,2019,45(1):52-56. DOI: 10.13272/j.issn.1671-251x.2018060035

    YANG Xuejun,WANG Ranfeng,WANG Huaifa. Research on laser positioning matrix of straightness detection robot for hydraulic support[J]. Industry and Mine Automation,2019,45(1):52-56. DOI: 10.13272/j.issn.1671-251x.2018060035

    [9] 张树楠,曹现刚,崔亚仲,等. 基于多传感器的液压支架直线度测量方法研究[J]. 煤矿机械,2020,41(4):56-59. DOI: 10.13436/j.mkjx.202004019

    ZHANG Shunan,CAO Xiangang,CUI Yazhong,et al. Research on straightness measurement method of hydraulic support based on multi-sensor[J]. Coal Mine Machinery,2020,41(4):56-59. DOI: 10.13436/j.mkjx.202004019

    [10] 王宇卓,常宗旭,高飞,等. 液压支架的调直方法研究[J]. 机电工程,2021,38(5):645-649. DOI: 10.3969/j.issn.1001-4551.2021.05.020

    WANG Yuzhuo,CHANG Zongxu,GAO Fei,et al. Study on the alignment method of hydraulic support[J]. Journal of Mechanical & Electrical Engineering,2021,38(5):645-649. DOI: 10.3969/j.issn.1001-4551.2021.05.020

    [11] 张帆,李闯,李昊. 智能综采工作面刮板输送机直线度监测方法研究[J]. 煤炭科学技术,2022,50(4):246-255. DOI: 10.13199/j.cnki.cst.2020-0591

    ZHANG Fan,LI Chuang,LI Hao. Study on straightness monitoring method of scraper conveyor in intelligent fully-mechanized mining face[J]. Coal Science and Technology,2022,50(4):246-255. DOI: 10.13199/j.cnki.cst.2020-0591

    [12] 李志鹏,程兰,王志飞,等. 卡尔曼滤波框架下基于最大相关熵的移动机器人位姿估计[J]. 太原理工大学学报,2021,52(6):936-944. DOI: 10.16355/j.cnki.issn1007-9432tyut.2021.06.012

    LI Zhipeng,CHENG Lan,WANG Zhifei,et al. Pose estimation of mobile robots based on maximum correntropy under Kalman filtering framework[J]. Journal of Taiyuan University of Technology,2021,52(6):936-944. DOI: 10.16355/j.cnki.issn1007-9432tyut.2021.06.012

    [13]

    CHEN Badong,LIU Xi,ZHAO Haiquan,et al. Maximum correntropy Kalman filter[J]. Automatica,2017,76:70-77. DOI: 10.1016/j.automatica.2016.10.004

    [14] 李松,唐小妹,孙鹏跃,等. GNSS/INS紧组合最大熵卡尔曼滤波算法[J]. 全球定位系统,2020,45(4):1-8. DOI: 10.13442/j.gnss.1008-9268.2020.04.001

    LI Song,TANG Xiaomei,SUN Pengyue,et al. Maximum correntropy Kalman filter for GNSS/INS tightly-coupled integration[J]. GNSS World of China,2020,45(4):1-8. DOI: 10.13442/j.gnss.1008-9268.2020.04.001

    [15] 龙子旋,周琪,彭侠夫,等. 非高斯环境下船变测量最大熵卡尔曼滤波方法[J]. 系统工程与电子技术,2021,43(11):3278-3287. DOI: 10.12305/j.issn.1001-506X.2021.11.28

    LONG Zixuan,ZHOU Qi,PENG Xiafu,et al. Maximum correntropy Kalman filter used for hull deformation measurement in non-Gaussian environment[J]. Systems Engineering and Electronics,2021,43(11):3278-3287. DOI: 10.12305/j.issn.1001-506X.2021.11.28

  • 期刊类型引用(3)

    1. 李永安,朱明亮,王宏伟,付翔. 高速开关阀先导驱动高水基大流量比例调速阀的设计与仿真. 液压与气动. 2024(02): 60-67 . 百度学术
    2. 陈湘源. 综采工作面轨迹测量与直线度控制方法. 矿业研究与开发. 2024(03): 185-191 . 百度学术
    3. 王云飞,赵继云,张鹤,王浩,张阳. 基于神经网络补偿的液压支架群推移系统直线度控制方法. 煤炭科学技术. 2024(11): 174-185 . 百度学术

    其他类型引用(3)

图(9)
计量
  • 文章访问数:  157
  • HTML全文浏览量:  30
  • PDF下载量:  21
  • 被引次数: 6
出版历程
  • 收稿日期:  2022-02-17
  • 修回日期:  2022-10-29
  • 网络出版日期:  2022-06-13
  • 刊出日期:  2022-11-24

目录

/

返回文章
返回