Defogging algorithm of underground coal mine image based on adaptive dual-channel prior
-
摘要: 针对暗通道先验算法在处理煤矿井下图像时存在的图像失真、细节不足和图像暗光等问题,提出了一种基于自适应双通道先验的煤矿井下图像去雾算法。首先,根据大气散射物理模型与煤矿井下特殊环境,建立了煤矿井下尘雾图像退化模型。然后,融合暗通道与亮通道建立双通道先验模型来优化透射率,并加入自适应权重系数来提高透射率图的精度,采用梯度导向滤波代替传统导向滤波对透射率图进行细化处理。最后,结合矿井环境改进大气光值求取方法,根据尘雾图像退化模型复原图像。实验结果表明:该算法能够有效去除图像中的尘雾现象,避免了光晕模糊和过增强现象;相较于暗通道先验算法、Retinex算法、Tarel算法,该算法大幅提升了图像信息熵与平均梯度,使复原后图像的细节信息更加丰富,同时缩短了运行时间。Abstract: When dark channel prior algorithm is used to deal with underground coal mine images, there are problems of image distortion, lack of details and dark light. In order to solve the above problems, a defogging algorithm of underground coal mine image based on adaptive dual-channel prior is proposed. Firstly, according to the physical model of atmospheric scattering and the special environment of underground coal mine, the dust and fog image degradation model in underground coal mine is established. Secondly, a dual-channel prior model is established by fusing the dark channel and the bright channel to optimize the transmittance. An adaptive weight coefficient is added to improve the precision of the transmittance image. And the gradient guided filtering is adopted to replace the traditional guided filtering to refine the transmittance image. Finally, combined with the mine environment, the atmospheric light value calculation method is improved. And the image is restored according to the dust and fog image degradation model. The experimental results show that the algorithm can effectively remove the fog phenomenon in the image, avoid the halo blur and over-enhancement phenomenon. Compared with dark channel prior algorithm, Retinex algorithm and Tarel algorithm, this algorithm greatly improves the image information entropy and average gradient. The algorithm enriches the detailed information of the restored image and shortens the running time.
-
-
表 1 不同算法去雾图像指标比较
Table 1 Indicators comparison of defogging images processed by different algorithms
图像 评价指标 本文算法 暗通道先验算法 Retinex算法 Tarel算法 图像1 信息熵 7.19 6.58 7.41 6.92 标准差 46.88 34.35 47.63 35.12 平均梯度 0.1342 0.0576 0.0969 0.0781 图像2 信息熵 7.34 6.69 7.48 7.00 标准差 48.96 35.77 48.52 37.46 平均梯度 0.1071 0.0487 0.0961 0.0682 图像3 信息熵 7.47 6.80 7.58 7.09 标准差 43.94 34.31 46.98 36.13 平均梯度 0.0906 0.0449 0.0770 0.0531 图像4 信息熵 7.05 6.36 7.46 6.81 标准差 53.69 36.97 47.48 32.11 平均梯度 0.0670 0.0313 0.0757 0.0550 图像5 信息熵 7.34 7.55 7.69 7.42 标准差 58.73 56.39 58.63 57.51 平均梯度 0.0734 0.0357 0.0633 0.0362 表 2 不同算法运行时间比较
Table 2 Comparison of running time of different algorithms s
图像 本文算法 暗通道先验算法 Retinex算法 Tarel算法 图像1 3.68 6.75 1.34 379 图像2 3.38 6.85 1.35 283 图像3 2.18 6.58 1.36 316 图像4 2.59 6.69 1.32 293 图像5 5.68 8.21 2.56 386 -
[1] 范伟强,刘毅. 基于自适应小波变换的煤矿降质图像模糊增强算法[J]. 煤炭学报,2020,45(12):4248-4260. FAN Weiqiang,LIU Yi. Fuzzy enhancement algorithm of coal mine degradation image based on adaptive wavelet transform[J]. Journal of China Coal Society,2020,45(12):4248-4260.
[2] 郭瑞,党建武,沈瑜,等. 改进的单尺度Retinex图像去雾算法[J]. 兰州交通大学学报,2018,37(6):69-75. DOI: 10.3969/j.issn.1001-4373.2018.06.011 GUO Rui,DANG Jianwu,SHEN Yu,et al. Fog removal algorithm of improved single scale Retinex image[J]. Journal of Lanzhou Jiaotong University,2018,37(6):69-75. DOI: 10.3969/j.issn.1001-4373.2018.06.011
[3] 龚云,杨庞彬,颉昕宇. 结合同态滤波与直方图均衡化的井下图像匹配算法[J]. 工矿自动化,2021,47(10):37-41. GONG Yun,YANG Pangbin,JIE Xinyu. Underground image matching algorithm combining homomorphic filtering and histogram equalization[J]. Industry and Mine Automation,2021,47(10):37-41.
[4] 刘晓阳,乔通,乔智. 基于双边滤波和Retinex算法的矿井图像增强方法[J]. 工矿自动化,2017,43(2):49-45. LIU Xiaoyang,QIAO Tong,QIAO Zhi. Image enhancement method of mine based on bilateral filtering and Retinex algorithm[J]. Industry and Mine Automation,2017,43(2):49-45.
[5] 智宁,毛善君,李梅. 基于照度调整的矿井非均匀照度视频图像增强算法[J]. 煤炭学报,2017,42(8):2190-2197. ZHI Ning,MAO Shanjun,LI Mei. Enhancement algorithm based on illumination adjustment for nonuniform illuminance video images in coal mine[J]. Journal of China Coal Society,2017,42(8):2190-2197.
[6] HE Kaiming,SUN Jian,TANG Xiao'ou. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(12):2341-2353. DOI: 10.1109/TPAMI.2010.168
[7] 王启明,李季. 煤矿井下高清图像快速去雾算法研究[J]. 小型微型计算机系统,2018,39(11):2557-2560. DOI: 10.3969/j.issn.1000-1220.2018.11.038 WANG Qiming,LI Ji. Study on fast haze removal algorithm for underground high definition image[J]. Journal of Chinese Computer Systems,2018,39(11):2557-2560. DOI: 10.3969/j.issn.1000-1220.2018.11.038
[8] 杜明本,陈立潮,潘理虎. 基于暗原色理论和自适应双边滤波的煤矿尘雾图像增强算法[J]. 计算机应用,2015,35(5):1435-1438,1448. DOI: 10.11772/j.issn.1001-9081.2015.05.1435 DU Mingben,CHEN Lichao,PAN Lihu. Enhancement algorithm for fog and dust images in coal mine based on dark channel prior theory and bilateral adaptive filter[J]. Journal of Computer Applications,2015,35(5):1435-1438,1448. DOI: 10.11772/j.issn.1001-9081.2015.05.1435
[9] NARASIMHAN S G,NAYAR K. Vision and the atmosphere[J]. International Journal of Computer Vision,2002,48(3):233-254. DOI: 10.1023/A:1016328200723
[10] XU Yueshu, GUO Xiaoqiang, WANG Haiying, et al. Single image haze removal using light and dark channel prior[C]//2016 IEEE/CIC International Conference on Communications in China (ICCC), Piscataway, 2016: 1-6.
[11] 蒯峰阳,张丹. 基于亮暗通道相结合的自适应图像去雾算法[J]. 计算技术与自动化,2021,40(2):118-124. KUAI Fengyang,ZHANG Dan. Adaptive single image haze removal using integrated dark and bright channel prior[J]. Computing Technology and Automation,2021,40(2):118-124.
[12] HE Kaiming,SUN Jian,TANG Xiao'ou. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(6):1397-1409. DOI: 10.1109/TPAMI.2012.213
[13] YU Teng,SONG Kang,MIAO Pu,et al. Nighttime single image dehazing via pixel-wise alpha blending[J]. IEEE Access,2019,7:114619-114630. DOI: 10.1109/ACCESS.2019.2936049
[14] 张谢华,张申,方帅,等. 煤矿智能视频监控中雾尘图像的清晰化研究[J]. 煤炭学报,2014,39(1):198-204. ZHANG Xiehua,ZHANG Shen,FANG Shuai,et al. Clearing research on fog and dust images in coalmine intelligent video surveillance[J]. Journal of China Coal Society,2014,39(1):198-204.
[15] KOU Fei,CHEN Weihai,WEN Changyun,et al. Gradient domain guided image filtering[J]. IEEE Transactions on Image Processing,2015,24(11):4528-4539. DOI: 10.1109/TIP.2015.2468183
[16] 刘晓文,仲亚丽,袁莎莎,等. 基于暗原色先验的煤矿井下退化图像复原算法[J]. 煤炭科学技术,2012,40(6):77-80. LIU Xiaowen,ZHONG Yali,YUAN Shasha,et al. Restoration algorithms of degradation image in underground mine based on dark channel prior[J]. Coal Science and Technology,2012,40(6):77-80.
[17] 张英俊,雷耀花,潘理虎. 基于暗原色先验的煤矿井下图像增强技术[J]. 工矿自动化,2015,41(3):80-83. ZHANG Yingjun,LEI Yaohua,PAN Lihu. Enhancement technique of underground image based on dark channel prior[J]. Industry and Mine Automation,2015,41(3):80-83.
-
期刊类型引用(9)
1. 王力,黄文辉,王军,贾远温,刘振笃. 35kV线路下交叉跨越10kV线路弧光放电分析. 电气传动自动化. 2024(03): 58-61 . 百度学术
2. 周之华,谢松伟,吴育腾,张海台,周立波,钱程. 谐振接地系统单相接地故障熄弧时刻识别方法. 供用电. 2022(12): 45-50+58 . 百度学术
3. 乔东伟,宫德锋,谢松伟,薛永端,孙庆森,亓鹏. 小电流接地故障熄弧后电气量对暂态选线方法的影响. 电力系统及其自动化学报. 2022(12): 114-120 . 百度学术
4. 刘科研,盛万兴,董伟杰. 配电网弧光接地故障建模仿真与实验研究综述. 高电压技术. 2021(01): 12-22 . 百度学术
5. 施正钗. 谐振接地系统弧光接地过电压自动抑制方法. 电子设计工程. 2021(02): 72-75+80 . 百度学术
6. 夏楠. 煤矿供电地面监控系统的设计. 自动化应用. 2020(08): 116-117 . 百度学术
7. 张增强,陈伟伟,薛静杰,徐龙秀,翟旭京,吴伟丽. 面向泛在电力物联网的配电网过电压类故障识别边缘计算节点架构研究. 电气应用. 2020(09): 86-92 . 百度学术
8. 张增强,陈伟伟,薛静杰,徐龙秀,翟旭京,吴伟丽. 基于时域谱熵的多电缆线路弧光接地过电压特征快速识别. 数学的实践与认识. 2020(17): 81-89 . 百度学术
9. 刘聚财,耿蒲龙,曲兵妮,宋建成,罗超,李鑫,田敏. 矿井供电系统弧光接地过电压形成过程研究. 工矿自动化. 2018(04): 69-74 . 本站查看
其他类型引用(2)