采空区遗留煤柱下方回采巷道失稳特征及控制技术研究

曹金钟, 高乐, 闫鹏飞, 李猛, 陈雷, 杨华康

曹金钟,高乐,闫鹏飞,等. 采空区遗留煤柱下方回采巷道失稳特征及控制技术研究[J]. 工矿自动化,2022,48(4):44-52. DOI: 10.13272/j.issn.1671-251x.2021110032
引用本文: 曹金钟,高乐,闫鹏飞,等. 采空区遗留煤柱下方回采巷道失稳特征及控制技术研究[J]. 工矿自动化,2022,48(4):44-52. DOI: 10.13272/j.issn.1671-251x.2021110032
CAO Jinzhong, GAO Le, YAN Pengfei, et al. Research on instability characteristics and control technology of the mining roadway below the remaining coal pillars in the goaf[J]. Journal of Mine Automation,2022,48(4):44-52. DOI: 10.13272/j.issn.1671-251x.2021110032
Citation: CAO Jinzhong, GAO Le, YAN Pengfei, et al. Research on instability characteristics and control technology of the mining roadway below the remaining coal pillars in the goaf[J]. Journal of Mine Automation,2022,48(4):44-52. DOI: 10.13272/j.issn.1671-251x.2021110032

采空区遗留煤柱下方回采巷道失稳特征及控制技术研究

基金项目: 国家自然科学基金项目(52011530037)。
详细信息
    作者简介:

    曹金钟(1969-),男,山东枣庄人,高级工程师,主要从事煤矿生产技术与管理工作,E-mail:84206520@qq.com

  • 中图分类号: TD322

Research on instability characteristics and control technology of the mining roadway below the remaining coal pillars in the goaf

  • 摘要: 采空区下特厚煤层开采时,上煤层遗留煤柱和相邻工作面回采将对回采巷道的稳定性产生重要影响。目前对回采巷道变形破坏机理及控制的研究未考虑近距离留煤柱开采条件下特厚煤层临空巷道这种复杂环境。针对该问题,以塔山煤矿30503修复巷为工程背景,采用现场监测、理论分析及数值模拟等方法,分析了该巷道的变形破坏机理,提出了相应的巷道围岩支护技术。在30503修复巷顶板布置顶板离层仪,实时监测记录顶板各位置岩层位移情况。监测结果表明:由于受相邻工作面回采的影响,且距上覆遗留煤柱距离较近,30503修复巷顶板内围岩已较为破碎,在巷道掘进后,顶板变形速度快、离层量不断增加且影响范围广。针对监测结果,从遗留煤柱对巷道变形破坏的影响及基本顶断裂位置对巷道变形破坏的影响2个方面进行分析:① 巷道的不合理布置是导致修复巷破坏的重要原因,同时为避开遗留煤柱的影响,将巷道布置在距煤柱中心35 m(煤柱边缘25 m)以外的范围。② 修复巷掘进位置受遗留煤柱影响严重,巷道掘进前已处于高应力集中区域;当相邻工作面回采后,基本顶破断位置位于修复巷顶板上方,这是导致巷道顶板破碎的直接原因。针对上述分析结果,对不同宽度煤柱偏应力分布演化规律进行数值模拟分析,并提出了针对性的围岩稳定性控制技术方案:① 在保证煤柱具有足够的安全性和避免资源浪费前提下,将30503修复巷区段煤柱宽度设为8 m。② 近距离特厚煤层临空巷道掘进时,采用水力致裂措施减弱上覆遗留煤柱对煤层的影响。③ 选用锚网索+喷浆+单体支柱的支护方案对新掘巷道进行联合支护。为验证围岩稳定性控制技术的应用效果,采用十字观测法对30503工作面新修复巷掘进过程中的巷道变形量进行连续监测,结果表明:回采期间两帮变形量为90 mm,顶底板变形量为331 mm,围岩变形量得到了有效控制。
    Abstract: When the extra thick coal seam is mined in the goaf, the remaining coal pillar of upper coal seam and adjacent working face will have an important impact on the stability of mining roadway. At present, the research on deformation and failure mechanism and control of mining roadway does not consider the complex environment of gob-side roadway in extra thick coal seam under the condition of short distance coal pillar mining. In order to solve the problem, taking the 30503 repaired roadway in Tashan Coal Mine as the engineering background, the deformation and failure mechanism of the roadway is analyzed by using the methods of field monitoring, theoretical analysis and numerical simulation. And the corresponding surrounding rock support technology is proposed. A roof separator is arranged on the roof of 30503 repaired roadway to monitor and record the rock displacement at each position of the roof in real time. The monitoring results show that the surrounding rock in the roof of 30503 repaired roadway has been broken due to the impact of adjacent working face and the short distance to the overlying remaining coal pillar. After the roadway excavation, the roof deformation speed is fast, the seperation volume increases continuously and the impact range is wide. According to the monitoring results, the impact of the remaining coal pillar on the deformation and failure of the roadway and the impact of the fracture position of the basic roof on the deformation and failure of the roadway are analyzed. The results show the following points. ① The unreasonable arrangement of the roadway is an important reason for the damage of the repaired roadway. At the same time, in order to avoid the impact of the remaining coal pillar, the roadway is arranged at a distance of more than 35 m from the center of the coal pillar (25 m from the edge of the coal pillar). ② The excavation position of repaired roadway is seriously affected by the remaining coal pillar, and the roadway is in the high stress concentration area before excavation. When the adjacent 30501 working face is mined, the basic roof breaking position is located above the roof of the repaired roadway, which is the direct cause of the broken roof of the roadway. According to the above analysis results, the numerical simulation analysis is carried out on the evolution law of deviatoric stress distribution of coal pillars with different widths, and the targeted technical scheme of surrounding rock stability control is proposed. ① On the premise of ensuring sufficient safety of the coal pillar and avoiding waste of resources, the width of the coal pillar in the 30503 repaired roadway section is set to 8 m. ② When excavating the gob-side roadway in the short distance extra thick coal seam, hydraulic fracturing measures are adopted to reduce the impact of the overlying coal pillars on the coal seam. ③ The support scheme of bolt-mesh-anchor+guniting+single pillar is selected to support the newly excavated roadway. In order to verify the application effect of the surrounding rock stability control technology, the cross observation method is used to continuously monitor the roadway deformation during the excavation of the new repaired roadway in 30503 working face. The results show that the deformation of the two sides is 90 mm, the deformation of the roof and floor is 331 mm, and the deformation of the surrounding rock is effectively controlled.
  • 粉尘是煤矿作业中的主要危害因素之一,对矿工身体健康危害极大[1-2]。长期暴露在高浓度的煤矿粉尘环境中,粉尘颗粒逐渐沉积于肺部,可能引发不可逆的纤维化病变[3-4],最终导致严重的肺部疾病。开展粉尘浓度连续监测不仅是保障工人健康的重要手段,还能为制定有效的粉尘防控策略提供科学依据,从而降低尘肺病的发生概率。

    光散射法是粉尘浓度连续监测领域的重要技术,研究者围绕该方法在理论与应用方面进行了广泛探索。J. R. Patts等[5]开发了一种结合光散射监测仪与移动摄像设备的系统,用于评估工人的粉尘暴露水平。A. Konoshonkin等[6]通过物理光学近似法研究了复杂形状大颗粒的光散射行为。Lin Chengjun等[7]针对粒径反演不稳定问题,提出了一种基于多参数优化的解决方案。Cui Xiaojun等[8]优化了鞘流结构设计,提升了粉尘散射信号的检测精度。Zheng Xiuting等[9]分析了粒径、折射率和光波长对粉尘浓度监测的影响规律。戴珺等[10]通过改进反演算法显著提高了测量系统的稳定性和抗干扰能力。吴娟等[11]利用非线性特征向量提取技术与神经网络模型,实现了粉尘颗粒的粒径解析和特性识别。

    然而,现有方法在煤矿井下高湿度环境中的应用仍存在一定局限性。当环境相对湿度达到或超过60%时,粉尘颗粒会发生显著的吸湿生长,导致粉尘浓度监测结果产生偏差[12]。针对该问题,C. Sioutas等[13]采用扩散干燥剂降低空气湿度,但需要定期维护干燥剂,以确保其正常工作。另外,一些研究尝试结合湿度传感器与经验算法,通过引入修正因子来补偿湿度对粉尘浓度的影响[14-16],但这种方法无法实时反映吸湿后粉尘颗粒粒径变化对浓度监测结果的影响,因此在一定程度上限制了监测的准确性。

    为了提高煤矿井下高湿度环境下的粉尘浓度监测精度,通过观察不同湿度条件下煤矿粉尘吸湿生长的形貌特征,分析了湿度对煤矿粉尘颗粒粒径变化和粉尘浓度监测的影响规律;基于湿度环境下多角度光散射粉尘浓度监测实验,提出一种基于光散射原理的在线湿度补偿技术。

    为了提升煤矿粉尘浓度监测的实效性与精准度,需要实时捕捉粉尘颗粒吸湿状况的动态变化。因此,从微观层面出发,运用扫描电子显微镜,研究煤矿粉尘颗粒吸湿生长时所展现出的形貌特性及颗粒粒径变化规律。

    实验所用粉尘需接近煤矿实际环境中的特性。将采集自煤矿的原始粉尘进行研磨处理后,采用自动分样筛进行筛分,获得中位粒径不超过75 μm的颗粒样本,以确保其粒度满足实验要求。

    实验仪器包括以下4种:

    1) 扫描电子显微镜。用于观察粉尘颗粒在吸湿条件下的微观形貌变化,其技术参数:分辨率高于3.0 nm@30 kV,放大倍数为6~300 000,加速电压为0~30 kV;样品台支持X轴移动≤80 mm,Y轴移动≤60 mm,Z轴移动≤50 mm,旋转角度为360°连续,倾斜角度为−5~+90°,可容纳直径为80 mm的样品,最大样品直径为110 mm。

    2) 粉尘采样器与分析天平。用于定量测定粉尘浓度。其中,粉尘采样器负载能力≥200 Pa,测量误差为±10%;分析天平的量程为120/42 g,分辨率分别为0.1 mg和0.01 mg。

    3) 粒径分析仪。用于评估粉尘颗粒的粒径分布,测试范围为0~150 μm,精度为±10%。

    4) 温湿度计。用于监测实验环境的温湿度条件,温度测量范围为−10~80 ℃,误差为±0.5 ℃;相对湿度测量范围为10%~99%,误差为±1%RH。

    实验系统由粉尘喷射装置、温湿度控制设备、实验舱、加湿器和取样装置等组成。粉尘喷射装置负责将粉尘样本均匀分布于实验舱内,取样装置用于在不同温湿度条件下收集粉尘颗粒,为实验分析提供样本。通过温控和湿度调节设备,实现实验舱内环境的稳定控制,覆盖温度范围10~30 ℃及相对湿度范围30%~95%。实验舱如图1所示。

    图  1  实验舱
    Figure  1.  Experiment chamber

    实验步骤如下:

    1) 粒径分析。将实验粉尘置于温度为25 °C、相对湿度为30%的恒温恒湿箱中静置处理24 h,以确保其达到稳定状态。随后取出一部分粉尘样品,通过粒度分析仪对其颗粒分布进行检测,并详细记录分析结果。

    2) 温湿度控制。启动环境实验舱的温湿度调节设备,将舱内温度稳定控制在(25±1)°C。根据实验要求,设置相对湿度范围为35%~98%,以模拟不同湿度条件下的实验环境。

    3) 粉尘喷射。待舱内温湿度达到并稳定在预设值后,启动粉尘发生装置,将煤矿粉尘均匀释放到舱内。经过一段时间喷射操作后关闭装置,静待实验舱内的粉尘浓度达到平衡状态。

    4) 电镜采样分析。在粉尘自然沉降至取样台的导电胶表面后,小心移除导电胶,并对样品进行喷金处理。将处理后的样品放入扫描电子显微镜中,观察煤矿粉尘颗粒吸湿生长后的微观形貌特征。

    在高湿度环境下,粉尘颗粒会因吸湿作用发生尺寸增长的现象[17]。通过扫描电子显微镜对沉积在导电胶上的粉尘颗粒进行观察,记录不同湿度条件下颗粒的形貌变化。选取粒径为10 μm的粉尘颗粒作为研究对象,对其在吸湿生长过程中的微观形貌进行分析。将扫描电镜放大1 500倍,粒径10 μm煤矿粉尘颗粒的吸湿生长形貌特征如图2所示。

    图  2  粒径10 μm煤矿粉尘颗粒的吸湿生长形貌特征
    Figure  2.  Hygroscopic growth and morphological characteristics of coal mine dust particles with a particle size of 10 μm

    图2可看出:当环境相对湿度低于40%时,粉尘颗粒表面相对粗糙,与原始状态对比,并未出现明显的吸湿现象;当湿度达到50%时,颗粒表面开始附着不同尺寸的小颗粒,粉尘颗粒开始发生吸湿生长;当湿度增至65%时,吸湿现象更加明显,颗粒表面附着了更多片状物质,且粉尘颗粒的粒径显著增大;当湿度达到80%时,吸湿生长现象更加显著,颗粒的粒径变化更为明显。可见,当环境相对湿度达到或超过50%时,粉尘颗粒开始显现吸湿生长现象。随着湿度的进一步增加,颗粒的粒径持续增大,湿度越高,煤矿粉尘颗粒的凝并生长速度越快,生成的颗粒结构更加紧密。

    为了进一步研究粉尘颗粒的吸湿生长规律,在湿度由35%升至98%的过程中,使用导电胶进行粉尘采样并确保发尘浓度保持恒定,通过扫描电子显微镜观察湿度升高过程中煤矿粉尘颗粒的粒径。绘制煤矿粉尘颗粒粒径与环境湿度的关系曲线,如图3所示。可看出煤矿粉尘颗粒粒径随着湿度的增加呈现指数型增长趋势,其拟合关系为

    图  3  煤矿粉尘颗粒粒径与环境湿度的关系曲线
    Figure  3.  Relationship curve between coal mine dust particle size and environmental humidity
    $$ D=D_0(1+kh^a) $$ (1)

    式中:D为在相对湿度$ h $(通常取0~100%)下的粒径;D0为干燥条件下的粒径;k为吸湿性常数,其值与颗粒化学性质相关;a为指数参数,通常为1~2。

    为了探究湿度对煤矿粉尘浓度的影响,首先在环境湿度低于50%的条件下,通过手工采样称重法测得粉尘浓度为11.3 mg/m³。在保持发尘浓度恒定的前提下,采用相同的手工采样方法,在不同湿度环境下测量并记录粉尘浓度变化,得到不同环境湿度下的粉尘浓度变化曲线,如图4所示。可看出当环境湿度由50%逐步增加至90%时,煤矿粉尘浓度呈现指数型增长趋势。经拟合,得到煤矿粉尘浓度与环境湿度之间的关系:

    $$ C_{\mathrm{m}}(h)=C_{\mathrm{m}}(0)(1+kf^b(h)^{ }) $$ (2)

    式中:$ C_{\mathrm{m}}(h) $为不同湿度下的煤矿粉尘浓度;$ {C_{\mathrm{m}}}(0) $为干燥条件下的煤矿粉尘浓度;$ f(h) $为湿度增量函数,通常为非线性函数;b为指数参数。

    图  4  不同环境湿度下的煤矿粉尘浓度变化曲线
    Figure  4.  Variation curve of coal mine dust concentration under different environmental humidity levels

    为减少湿度变化引起的粉尘浓度监测误差,需在煤矿粉尘浓度监测中进行湿度在线补偿。当前煤矿粉尘浓度监测中常用光散射法,因此提出一种基于不同角度散射光特性的湿度在线补偿技术。

    基于多角度光散射理论,当光散射角度为π/2和3π/2时,能够实现最理想的粉尘浓度监测效果[18-19]。故在光散射角度为π/2和3π/2处分别安置光散射接收器,并将激光光源设置在与接收角垂直的方向。粉尘在2个接收器及激光光源所构成的空间中通过。

    多角度光散射粉尘浓度监测单元主要由激光发射、散射光接收及光陷阱3个部分构成,如图5 所示。激光发射部分包含激光光源和光学透镜组,散射光接收部分由光电传感器和检测电路组成,光陷阱的作用是吸收入射光及干扰反射光,以确保监测过程的准确性。

    图  5  多角度光散射粉尘浓度监测单元
    Figure  5.  Light-scattering dust concentration monitoring unit with multiple angles

    进行粉尘浓度监测时,开启激光光源,激光经过光学透镜组产生1组光强稳定的平行入射光。当被测粉尘颗粒在光敏感区通过时,依据Mie散射原理,光电传感器1和2会接收到散射光。通过特定的换算方法可得出被测粉尘的浓度值。

    为研究不同湿度、不同粉尘颗粒粒径与散射光通量之间存在的关系,构建用于粉尘浓度监测的湿度补偿实验模型。实验所使用的粉尘、仪器及系统均与1.1节中保持一致,仅在实验步骤的最后一个环节增加采集光通量值的操作:将多角度光散射粉尘浓度监测单元放置于环境实验舱内,进行发尘操作;待粉尘浓度稳定后,采集多角度光散射粉尘浓度监测单元在不同湿度、不同粒径粉尘情况下光散射角度为π/2和3π/2时的散射光通量值。发尘操作使粉尘浓度达到11.3 mg/m³,经过反复多次实验,采集同一种中位粒径粉尘在不同湿度条件下光散射角度为π/2和3π/2时的散射光通量并计算比值,绘制中位粒径为11.3 μm的粉尘在不同湿度下的散射光通量比值曲线,如图6所示。经回归分析[20-21],得到同种粒径粉尘的散射光通量比值与湿度的关系。

    $$ {k_{\mathrm{h}}} = {m_{{\mathrm{d}}2}}{\exp(h)} $$ (3)

    式中:$ {k_{\mathrm{h}}} $为同种粒径粉尘的散射光通量比值与湿度的关系因子;$ {m_{{\mathrm{d}}2}} $为修正系数。

    图  6  中位粒径为11.3 μm的粉尘在不同湿度下的散射光通量比值曲线
    Figure  6.  Scattered luminous flux ratio of dust with median particle size of 11.3 μm under different humidity

    采集不同中位粒径粉尘在相同湿度环境下光散射角度为π/2和3π/2时的散射光通量并计算比值,得到不同中位粒径粉尘在90%RH湿度下2个角度的散射光通量比值曲线,如图7所示。经回归分析,得到相同湿度情况下粉尘中位粒径与散射光通量比值的关系。

    $$ k_{\mathrm{p}}=m_{\mathrm{d}1}\ln\frac{d}{\mathrm{mm}}+m_1 $$ (4)

    式中:$ {k_{\mathrm{p}}} $为不同中位粒径粉尘在相同湿度下的散射光通量比值的补偿因子;$ {m_{{\mathrm{d}}1}} $为修正系数;d为被测粉尘颗粒粒径;$ {m_1} $为补偿量。

    图  7  不同中位粒径粉尘在90%RH湿度下2个角度的散射光通量比值曲线
    Figure  7.  Scattered light flux ratio curve at two angles for dust particles with different median particle sizes under 90% RH humidity

    经过实验研究和数学分析,建立实时反馈粉尘颗粒吸湿生长引起粒径变化的湿度补偿实验模型:

    $$ C_{\Delta\mathrm{m}}=k_{\mathrm{p}}k_{\mathrm{h}}(I_1+I_2) $$ (5)

    式中:CΔm为粉尘浓度;I1I2分别为散射角度为π/2和3π/2对应位置接收到的散射光强度。

    设置实验环境温度为(25±2)°C,相对湿度为(80±2)%,以滤膜采样法为标准方法,采用带湿度补偿与不带湿度补偿的粉尘浓度监测单元进行对比,得到不同浓度下的监测误差,如图8所示。可看出采用湿度补偿的多角度光散射粉尘浓度监测单元监测误差≤11.2%,相比未进行湿度补偿的监测单元,误差降低了2.9%。

    图  8  煤矿粉尘浓度监测误差
    Figure  8.  Monitoring error of coal mine dust concentration

    1) 观察煤矿粉尘颗粒在吸湿生长过程中的形貌特征,通过实验得到不同湿度条件下煤矿粉尘颗粒粒径和粉尘浓度的变化规律。

    2) 研究了环境湿度、粉尘颗粒粒径与散射光通量之间的关联性,建立了湿度补偿实验模型。

    3) 开展了基于湿度补偿的粉尘浓度监测实验,结果表明,采用湿度补偿的多角度光散射粉尘浓度监测单元的粉尘浓度误差≤11.2%,较不带湿度补偿的粉尘浓度监测单元降低了2.9%,降低了湿度对粉尘浓度监测的影响。

  • 图  1   30503工作面巷道布置

    Figure  1.   Roadway layout of 30503 working face

    图  2   修复巷顶板变形监测数据

    Figure  2.   Monitoring data of roof deformation of repaired roadway

    图  3   煤柱载荷估算模型

    Figure  3.   Coal pillar load estimation method

    图  4   煤柱下方偏应力分布规律

    Figure  4.   Distribution law of deviatoric stress under coal pillar

    图  5   沿空巷道关键块体破断位置

    Figure  5.   Break position of the key block along the gob-side roadway

    图  6   数值计算模型

    Figure  6.   Numerical calculation model

    图  7   不同宽度煤柱偏应力不变量分布

    Figure  7.   Distribution of deviatoic stress invariants of coal pillars with different widths

    图  8   上覆遗留煤柱水力致裂卸压设计

    Figure  8.   Design of hydraulic fracturing and pressure relief for overlying coal pillars

    图  9   30503修复巷支护方案

    Figure  9.   30503 repaired roadway support plan

    图  10   30503新掘巷道变形量

    Figure  10.   Deformation amount of 30503 newly excavated roadway

    表  1   数值模拟物理力学参数

    Table  1   Physical and mechanical parameters of numerical simulation

    岩性厚度/
    m
    密度/
    (kg·m−3
    体积模量/
    GPa
    剪切模量/
    GPa
    黏聚力/
    MPa
    摩擦角/
    (°)
    抗拉强度/
    MPa
    砂质泥岩512 4005.083.502.7832.211.32
    碎屑岩152 4505.493.782.9433.151.52
    细砂岩32 4708.776.584.7736.792.98
    砂质泥岩82 4005.083.502.7832.211.32
    2号煤层31 3404.933.252.6731.221.04
    高岭质泥岩52 5007.87.632.9538.743.57
    3−5号煤层141 3404.933.252.6731.221.04
    高岭质泥岩42 5466.654.333.6335.832.38
    粉砂岩52 4707.815.624.2435.932.71
    7号煤层21 3404.933.252.6731.221.04
    砂质泥岩212 4005.083.502.7832.211.32
    下载: 导出CSV
  • [1] 戴文祥,潘卫东,李猛,等. 近距离煤层强扰动巷道布置与支护技术研究[J]. 煤炭科学技术,2020,48(12):61-67.

    DAI Wenxiang,PAN Weidong,LI Meng,et al. Study on layout and support technology of strongly disturbed roadway in contiguous coal seam[J]. Coal Science and Technology,2020,48(12):61-67.

    [2] 张炜,张东升,陈建本,等. 极近距离煤层回采巷道合理位置确定[J]. 中国矿业大学学报,2012,41(2):182-188.

    ZHANG Wei,ZHANG Dongsheng,CHEN Jianben,et al. Determining the optimum gateway location for extremely close coal seams[J]. Journal of China University of Mining & Technology,2012,41(2):182-188.

    [3] 张向阳,常聚才. 上下采空极近距离煤层开采围岩应力及破坏特征研究[J]. 采矿与安全工程学报,2014,31(4):506-511.

    ZHANG Xiangyang,CHANG Jucai. Stress and failure characteristics of surrounding rock in the extremely close distance coal seams group mining after the upper and lower coal seam mining[J]. Journal of Mining & Safety Engineering,2014,31(4):506-511.

    [4] 岳喜占,涂敏,李迎富,等. 近距离煤层开采遗留边界煤柱下底板巷道采动附加应力计算[J]. 采矿与安全工程学报,2021,38(2):246-252,259.

    YUE Xizhan,TU Min,LI Yingfu,et al. Calculation of subsidiary mining stress in floor roadway under the remaining boundary pillar of close coal seam mining[J]. Journal of Mining & Safety Engineering,2021,38(2):246-252,259.

    [5] 谷攀,李彦斌,韦庆亮,等. 极近距离煤层采空区煤柱下回采巷道支护技术[J]. 中国科技论文,2020,15(3):373-378. DOI: 10.3969/j.issn.2095-2783.2020.03.019

    GU Pan,LI Yanbin,WEI Qingliang,et al. Support technology for mining roadway under coal pillar in goaf of extremely close coal seam[J]. China Sciencepaper,2020,15(3):373-378. DOI: 10.3969/j.issn.2095-2783.2020.03.019

    [6] 谷攀,李彦斌,李立功,等. 极近距离煤层采空区下过煤柱回采巷道破坏特征及控制对策研究[J]. 太原理工大学学报,2020,51(4):587-593.

    GU Pan,LI Yanbin,LI Ligong,et al. Study on failure characteristics and control countermeasures of mining roadway in goaf of extremely close distance[J]. Journal of Taiyuan University of Technology,2020,51(4):587-593.

    [7] 李春元,王泓博,石瑶玉. 上覆遗留区段煤柱对下伏煤层开采扰动影响研究[J]. 煤炭科学技术,2020,48(3):232-239.

    LI Chunyuan,WANG Hongbo,SHI Yaoyu. Study on disturbing influence of overlying remaining coal pillars on underlying coal seam mining[J]. Coal Science and Technology,2020,48(3):232-239.

    [8] 刘霞,翟春佳,李常浩. 上煤层遗留煤柱影响段沿空掘巷围岩破坏特征及补强支护措施[J]. 矿业安全与环保,2021,48(1):101-107.

    LIU Xia,ZHAI Chunjia,LI Changhao. Failure characteristics and reinforcement support of surrounding rock in gob-side entry driving affected by residual coal pillar of upper coal seam[J]. Mining Safety & Environmental Protection,2021,48(1):101-107.

    [9] 方新秋,郭敏江,吕志强. 近距离煤层群回采巷道失稳机制及其防治[J]. 岩石力学与工程学报,2009,28(10):2059-2067. DOI: 10.3321/j.issn:1000-6915.2009.10.013

    FANG Xinqiu,GUO Minjiang,LYU Zhiqiang. Instability mechanism and prevention of roadway under close distance seam group mining[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(10):2059-2067. DOI: 10.3321/j.issn:1000-6915.2009.10.013

    [10] 王志强, 石磊, 苏越, 等. 特厚煤层错层位外错巷道围岩控制技术研究[J]. 矿业科学学报, 2018, 3(5): 470-476.

    WANG Zhiqiang, SHI Lei, SU Yue, et al. Research on surrounding rock control technology of external-misaligned stagger arrangement of roadway in ultra-thick seam[J]. Journal of Mining Science and Technology. 2018, 3(5): 470-476.

    [11] 柏建彪,王卫军,侯朝炯,等. 综放沿空掘巷围岩控制机理及支护技术研究[J]. 煤炭学报,2000,25(5):478-481. DOI: 10.3321/j.issn:0253-9993.2000.05.007

    BAI Jianbiao,WANG Weijun,HOU Chaojiong,et al. Control mechanism and support technique about gateway driven along goaf in fully mechanized top coal caving face[J]. Journal of China Coal Society,2000,25(5):478-481. DOI: 10.3321/j.issn:0253-9993.2000.05.007

    [12] 孙福玉. 综放开采窄煤柱沿空掘巷围岩失稳机理与控制技术[J]. 煤炭科学技术,2018,46(10):149-154.

    SUN Fuyu. Instability mechanism and control technology of surrounding rock in gob-side entry with narrow pillar by fully mechanized caving mining[J]. Coal Science and Technology,2018,46(10):149-154.

    [13] 王卫军,侯朝炯. 回采巷道煤帮锚杆支护可靠性分析[J]. 岩石力学与工程学报,2001,20(6):813-816. DOI: 10.3321/j.issn:1000-6915.2001.06.013

    WANG Weijun,HOU Chaojiong. Reliability analysis on coal wall bolting of extraction gallery[J]. Chinese Journal of Rock Mechanics and Engineering,2001,20(6):813-816. DOI: 10.3321/j.issn:1000-6915.2001.06.013

    [14] 张剑. 西山矿区近距离煤层群开采巷道围岩控制技术研究及应用[D]. 北京: 煤炭科学研究总院, 2020.

    ZHANG Jian. Study and application of roadway surrounding rock control technology to close coal seam group mining in Xisan Mining area[D]. Beijing: China Coal Research Institute, 2020.

    [15] 宁静. 深部大采高综采工作面区段煤柱宽度优化研究[J]. 煤炭工程,2019,51(3):13-17.

    NING Jing. Width optimization of section coal pillar of deep fully mechanized mining face[J]. Coal Engineering,2019,51(3):13-17.

    [16] 刘洋. 长壁留煤柱支撑法开采煤柱设计流程[J]. 煤矿开采,2008,13(2):19-22. DOI: 10.3969/j.issn.1006-6225.2008.02.006

    LIU Yang. Design flow of coal pillar mining with long wall and pillar supporting method[J]. Coal Mining Technology,2008,13(2):19-22. DOI: 10.3969/j.issn.1006-6225.2008.02.006

    [17] 许磊. 近距离煤柱群底板偏应力不变量分布特征及应用[D]. 北京: 中国矿业大学(北京), 2014.

    XU Lei. Distribution and application of floor deviatoric stress tensor invariants under close-distance multiple pillars[D]. Beijing: China University of Mining and Technology(Beijing), 2014.

    [18] 张广超. 综放松软窄煤柱沿空巷道顶板不对称破坏机制与调控系统[D]. 北京: 中国矿业大学(北京), 2017.

    ZHANG Guangchao. Asymmetric failure mechanism and regulation system of gob-side entry roof with fully-mechanized caving mining and loose and weak coal pillar[J]. Beijing: China University of Mining and Technology(Beijing), 2017.

    [19] 何文瑞,何富连,陈冬冬,等. 坚硬厚基本顶特厚煤层综放沿空掘巷煤柱宽度与围岩控制[J]. 采矿与安全工程学报,2020,37(2):349-358,365.

    HE Wenrui,HE Fulian,CHEN Dongdong,et al. Pillar width and surrounding rock control of gob-side roadway with mechanical caved mining in extra-thick coal seams under hard-thick main roof[J]. Journal of Mining & Safety Engineering,2020,37(2):349-358,365.

    [20] 董合祥. 特厚煤层综放开采沿空掘巷窄煤柱围岩控制[J]. 采矿与岩层控制工程学报,2021,3(3):32-42.

    DONG Hexiang. Ground control of narrow coal pillar in gob side entry driving with fully mechanized top coal caving mining in extra-thick coal seam[J]. Journal of Mining and Strata Control Engineering,2021,3(3):32-42.

图(10)  /  表(1)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-13
  • 修回日期:  2022-03-24
  • 网络出版日期:  2022-03-04
  • 刊出日期:  2022-04-24

目录

/

返回文章
返回