Prediction of strata behaviors law based on GRU and XGBoost
-
摘要: 采用光纤传感器监测的光纤频移值对矿压显现规律进行表征的过程中,传感器采集的数据存在缺失现象,无法准确预测矿压显现规律。针对该问题,以千秋煤矿为工程背景,在假设光纤下半部分数据丢失的前提下,引入GRU(门控循环单元)和LSTM(长短期记忆网络)2种预测模型,对缺失的光纤频移值进行对比预测,得出GRU模型的收敛速度优于LSTM模型的收敛速度,说明基于GRU模型的缺失值处理方法较优。将原始完整的光纤频移值转换为可表征矿压显现位置的光纤平均频移变化度,引入XGBoost(极端梯度提升)模型和BP神经网络模型进行对比预测,XGBoost模型能准确预测出测试集中所有出现“尖峰”的位置,而BP神经网络模型只预测出2处“尖峰”位置,说明XGBoost模型的预测效果优于BP神经网络模型的预测效果。将预测出的光纤频移缺失值替换至缺失位置,形成“完整”光纤频移值数据,将该数据转换为光纤平均频移变化度后,采用XGBoost模型进行预测。验证结果表明:LSTM模型及GRU模型均可准确预测出光纤下半部分的数据,且GRU模型准确性较LSTM模型准确性高;使用XGBoost可准确预测出测试集中出现的周期来压;通过GRU模型预测出的缺失数据经整合至缺失位置后,使用XGBoost模型仍可进行有效的矿压预测。Abstract: In the process of using optical fiber frequency shift value monitored by optical fiber sensor to characterize the strata behaviors law, the data collected by the sensor is missing, and the strata behaviors law can not be accurately predicted. In order to solve this problem, taking Qianqiu Coal Mine as the engineering background, under the premise of partial data loss of the lower half of the optical fiber, two prediction models, GRU (Gated Recurrent Unit) and LSTM (Long Short-Term Memory), are introduced to compare and predict the missing optical fiber frequency shift value. The convergence speed of the GRU model is better than that of the LSTM model, which shows that the missing value processing method based on the GRU model is better. The original and complete optical fiber frequency shift value is converted into the average optical fiber frequency shift change which can characterize the strata behaviors position, and the XGBoost (eXtreme Gradient Boosting) model and the BP neural network model are introduced for comparative prediction. The XGBoost model can predict all the 'peak' positions in the test set accurately. However, the BP neural network model can only predict two 'peak' positions, which shows that the prediction effect of the XGBoost model is better than that of the BP neural network model. The predicted optical fiber frequency shift missing value is replaced to the missing position to form 'complete' optical fiber frequency shift value data. The data is converted into the average optical fiber frequency shift change and then the XGBoost model is used for prediction. The results show that both the LSTM model and the GRU model can predict the data of the lower half of the optical fiber accurately, and the GRU model has higher accuracy than the LSTM model. The XGBoost model can predict the periodic pressure in the test set accurately. After the missing data predicted by the GRU model is integrated into the missing position, the XGBoost model can still predict the strata behaviors effectively.
-
-
表 1 覆岩结构及物理力学参数
Table 1 Rock structure and physical and mechanical parameters
序号 名称 岩层厚
度/m抗压强
度/MPa抗拉强
度/MPa弹性模量/
103 MPa岩层容重/
(t̩·m−3)15 黏土 15.0 15.0 1.5 5.0 1.6 14 泥灰岩 5.0 15.0 1.5 5.0 1.6 13 砾岩 65.0 35.0 5.5 32.0 1.8 12 细砂岩 85.0 30.0 4.0 28.0 1.6 11 砾岩 250.0 75.0 5.5 32.0 1.7 10 破碎带 1.0 40.0 4.0 28.0 1.7 9 砾岩 160.0 75.0 5.5 32.0 1.8 8 泥岩 50.0 50.0 1.2 5.0 1.9 7 细砂岩 40.0 40.0 9.0 35.0 1.6 6 粉砂岩 70.0 45.0 4.0 28.0 1.7 5 细砂岩 25.0 40.0 9.0 31.0 1.6 4 泥岩 25.0 50.0 1.2 5.0 1.9 3 2号煤 15.0 16.0 0.6 3.5 0.9 2 砾岩 8.0 65.0 5.5 32.0 1.8 1 泥岩 72.0 50.0 1.2 5.0 1.9 -
[1] 何满潮, 马新根, 王炯, 等. 中厚煤层复合顶板切顶卸压自动成巷工作面矿显现特征分析[J]. 岩石力学与工程学报,2018,37(11):2425-2434. HE Manchao, MA Xingen, WANG Jiong, et al. Feature analysis of working face strata pressure with roof cutting pressure releasing in medium-thick seam and compound roof condition[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(11):2425-2434.
[2] 高瑞.远场坚硬岩层破断失稳的矿压作用机理及地面压裂控制研究[D].徐州:中国矿业大学,2018. GAO Rui.The mechanism of ground pressure induced by the breakage of far-field hard strata and the control technology of ground fracturing[D].Xuzhou:China University of Mining and Technology,2018.
[3] 张朔滕. 基于光纤传感的矿压在线监测系统在阳煤五矿的应用研究[D]. 徐州: 中国矿业大学, 2019. ZHANG Shuoteng. Application of on-line monitoring system of mine pressure based on optical fiber sensing in Yangquan No. 5 Coal Mine[D]. Xuzhou: China University of Mining and Technology, 2019.
[4] 袁应吉, 刘洪洋, 吴文飞. 光纤光栅传感技术在煤矿安全监测中的应用[J]. 科学技术创新,2019(36):159-160. YUAN Yingji, LIU Hongyang, WU Wenfei. Application of fiber grating sensing technology in coal mine safety monitoring[J]. Scientific and Technological Innovation,2019(36):159-160.
[5] 杜文刚. 基于光纤感测的采动覆岩变形演化特征试验研究[D]. 西安: 西安科技大学, 2020. DU Wengang. Experimental study on deformation evolution characteristics of mining rock based on optical fiber sensing [D]. Xi'an: Xi'an University of Science and Technology, 2020.
[6] 王润沛. 基于机器学习的分布式光纤监测覆岩变形矿压预测研究[D]. 西安: 西安科技大学, 2020. WANG Runpei. Study on the prediction of deformation and rock pressure of overburden monitored by distributed optical fiber based on machine learning[D]. Xi'an: Xi'an University of Science and Technology, 2020.
[7] 巩师鑫, 任怀伟, 杜毅博, 等. 基于MRDA−FLPEM集成算法的综采工作面矿压迁移预测[J]. 煤炭学报,2021,46(增刊1):529-538. GONG Shixin, REN Huaiwei, DU Yibo, et al. Transfer prediction of underground pressure for fully mechanized mining face based on MRDA-FLPEM integrated algorithm[J]. Journal of China Coal Society,2021,46(S1):529-538.
[8] 赵毅鑫, 杨志良, 马斌杰, 等. 基于深度学习的大采高工作面矿压预测分析及模型泛化[J]. 煤炭学报,2020,45(1):54-65. ZHAO Yixin, YANG Zhiliang, MA Binjie, et al. Deep learning prediction and model generalization of ground pressure for deep longwall face with large mining height[J]. Journal of China Coal Society,2020,45(1):54-65.
[9] 常峰. 基于GA−BP神经网络的工作面顶板矿压预测模型应用研究[D]. 徐州: 中国矿业大学, 2019. CHANG Feng. Application research of the prediction model for the coal working face roof pressure based on GA-BP neural networks[D]. Xuzhou: China University of Mining and Technology, 2019.
[10] 李泽萌. 基于LSTM的采煤工作面矿压预测方法研究[D]. 西安: 西安科技大学, 2020. LI Zemeng. Research on prediction method of mining pressure in coal face based on LSTM[D]. Xi'an: Xi'an University of Science and Technology, 2020.
[11] 赵铭生, 刘守强, 纪润清, 等. 基于遗传算法优化BP神经网络的华北型煤田矿压破坏带深度预测[J]. 矿业研究与开发,2020,40(6):89-93. ZHAO Mingsheng, LIU Shouqiang, JI Runqing, et al. Depth prediction of mining pressure failure zone in North China coalfield based on BP neural network optimized by genetic algorithm[J]. Mining Research and Development,2020,40(6):89-93.
[12] LUO Junling, ZHANG Zhongliang, FU Yao, et al. Time series prediction of COVID-19 transmission in America using LSTM and XGBoost algorithms[J]. Results in Physics,2021,27(3):104462-104471.
[13] 袁强. 采动覆岩变形的分布式光纤检测与表征模拟试验研究[D]. 西安: 西安科技大学, 2017. YUAN Qiang. Experimental study on distributed and representation of mining-induced overburden deformation with distributed optical fiber sensing[D]. Xi'an: Xi'an University of Science and Technology, 2017.
[14] 柴敬, 魏世明. 相似材料中光纤传感检测特性分析[J]. 中国矿业大学学报,2007,36(4):458-462. DOI: 10.3321/j.issn:1000-1964.2007.04.008 CHAI Jing, WEI Shiming. Transmission character analysis of fiber optical sensing in similar material of simulation experiments[J]. Journal of China University of Mining & Technology,2007,36(4):458-462. DOI: 10.3321/j.issn:1000-1964.2007.04.008
[15] 柴敬, 霍晓斌, 钱云云, 等. 采场覆岩变形和来压判别的分布式光纤监测模型试验[J]. 煤炭学报,2018,43(增刊1):36-43. CHAI Jing, HUO Xiaobin, QIAN Yunyun, et al. Model test for evaluating deformation and weighting of overlying strata by distributed optical fiber sensing[J]. Journal of China Coal Society,2018,43(S1):36-43.
[16] 朱磊. 基于光纤频移变化度的采动覆岩变形表征试验研究[D]. 西安: 西安科技大学, 2018. ZHU Lei. Experimental research on overburden deformation characterized by fiber frequency shift variation degree[D]. Xi'an: Xi'an University of Science and Technology, 2018.
[17] TAKENS F. On the numerical determination of the dimension of an attractor[J]. Dynamical Systems and Bifrucations,1985,898:99-106.
-
期刊类型引用(30)
1. 郝晓旭. 采煤机自动调高控制系统研究与应用. 现代矿业. 2025(02): 190-192+196 . 百度学术
2. 李重重,刘清. 基于截割顶底板高度预测模型的采煤机自动调高技术. 工矿自动化. 2024(01): 9-16 . 本站查看
3. 李晓真,张海波,王光远. 基于ISSA-FNN的采煤机健康状态评估. 煤矿机械. 2024(03): 168-171 . 百度学术
4. 周展,桓磊,蒋峰,张浩涯,韩蓓蕾. 基于矿用5G技术的采煤机智能化技术. 陕西煤炭. 2024(02): 114-117 . 百度学术
5. 李重重,姚钰鹏. 基于工况触发的采煤机滚筒截割高度模板生成方法. 工矿自动化. 2024(04): 144-152 . 本站查看
6. 李存有. 薄煤层采煤机电缆结构优化与应用研究. 矿业装备. 2024(04): 134-136 . 百度学术
7. 刘敏. 煤矿采煤机自动化与智能化技术探讨. 矿业装备. 2024(04): 128-130 . 百度学术
8. 邱锦波,刘聪,吴昊坤,庄德玉,朱胜强. 采煤机智能化发展现状及关键技术展望. 工矿自动化. 2024(07): 64-78 . 本站查看
9. 王鑫,吴士良. 智能综采工作面系统设计及关键技术研究. 中国煤炭. 2024(09): 73-79 . 百度学术
10. 荆瑞俊,冯晨钟,李昕. 基于多传感器数据融合的煤机行进监测系统. 智能计算机与应用. 2024(10): 189-193 . 百度学术
11. 王忠宾,魏东,司垒,梁超权,谭超,赵亦辉. 基于协议匹配和数据压缩的采煤机数据管理技术研究. 煤炭科学技术. 2024(11): 89-102 . 百度学术
12. 杨柯,熊祖强,王春,付斌. 综采工作面液压支架阻力精准采集及分析技术研究. 中国煤炭. 2024(12): 131-139 . 百度学术
13. 王月辉. 煤矿采煤机智能化关键技术研究. 机械管理开发. 2023(01): 257-259 . 百度学术
14. 郑学召,严瑞锦,蔡国斌,王宝元,何芹健. 矿井动目标精确定位技术及优化方法研究. 工矿自动化. 2023(02): 14-22 . 本站查看
15. 种磊. 5G技术在煤矿智能化建设的应用. 陕西煤炭. 2023(02): 184-187+204 . 百度学术
16. 卢国志,胡斐,李鑫,姚春卉. 液压支架实时压力数据自动提取与动态分析方法研究. 煤炭工程. 2023(03): 120-126 . 百度学术
17. 李荣涛. 采煤机自动控制系统的安全优化研究. 机械管理开发. 2023(06): 151-152+155 . 百度学术
18. 崔耀,叶壮. 基于5G+云边端协同技术的采煤机智能调高调速控制系统设计与应用. 煤炭科学技术. 2023(06): 205-216 . 百度学术
19. 王明耀. 智能化综采工作面自动化高质量技术应用分析. 中国设备工程. 2023(14): 28-30 . 百度学术
20. 杨晓林. 采煤机牵引机构接触应力分析及其结构优化研究. 机械管理开发. 2023(07): 163-164+167 . 百度学术
21. 张磊. 互联网+采煤机智能化关键技术研究. 矿业装备. 2023(06): 41-43 . 百度学术
22. 崔耀,吴景红,叶壮,张森浪. 高瓦斯综放工作面智能放煤关键技术研究与应用. 煤炭科学技术. 2023(10): 252-265 . 百度学术
23. 邬鑫,逯晓臻,李战华. 关于综采工作面采煤机智能化技术的研究. 内蒙古煤炭经济. 2023(20): 34-36 . 百度学术
24. 巩师鑫,任怀伟,黄伟,李建. 复杂起伏煤层自适应开采截割路径优化与仿真. 煤炭科学技术. 2023(S2): 210-218 . 百度学术
25. 李博文,乔栋,赵杰,李乾,谢亚龙. 基于自适应模糊PID的采煤机滚筒调高控制技术的研究. 自动化应用. 2022(03): 135-138 . 百度学术
26. 周红旭,孙海军,张雷,王华英. 基于一维卷积神经网络的掘进机截割部磁场辅助定位技术. 河北科技大学学报. 2022(03): 231-239 . 百度学术
27. 冯国庭. 智能薄煤层等高综采工作面关键技术与装备. 煤炭科学技术. 2022(S1): 264-268 . 百度学术
28. 王清峰,陈航,周涛. 煤矿井下自动化钻进技术及装备的发展历程与展望. 矿业安全与环保. 2022(04): 45-50 . 百度学术
29. 张登山,邢海龙,张泽. 煤矿综采成套智能化控制系统研究. 工矿自动化. 2022(S1): 92-94 . 本站查看
30. 孙晋璐,高贵军,琚林涛,时三波. 寺河二号井薄煤层综采工作面智能化系统设计. 煤炭工程. 2022(10): 17-21 . 百度学术
其他类型引用(14)