Research on face recognition method in working environment of coal preparation plant
-
摘要: 针对选煤厂人脸图像信息易受复杂环境因素影响导致识别难度较大的问题,研究了一种选煤厂工况环境下的人脸识别方法。对归一化的选煤厂原始人脸图像进行Gabor小波变换,得到8个方向、5个尺度下的特征图谱;用改进AR-LGC编码算法进行编码,并对编码后同一尺度下不同方向的图谱进行特征融合,得到图像的融合特征图;将融合特征图划分为多个子块,统计分块直方图并加权级联得到直方图特征向量,将特征向量送入残差神经网络中训练,实现对选煤厂人员的人脸识别。改进AR-LGC编码算法增强了选煤厂人脸图像纹理相关度,解决了图像纹理相关度不足的问题,在弱化干扰特征的同时,保留了人脸图像中更多重要特征,缓解了人员面部受煤灰污染的问题。实验结果表明:当选煤厂人脸受到煤灰污染时,采用改进AR-LGC编码算法提取的特征保留了局部特征粗粒度,具有较好的抗噪性;本文方法的识别率为94.5%,平均耗时为0.933 0 s,与同类算法相比,在牺牲部分时间性能的条件下提升了识别率,牺牲的时间性能在可接受范围内。Abstract: The face image information of coal preparation plant is easily affected by complex environmental factors, which makes the recognition difficult. In order to solve this problem, a face recognition method in working environment of coal preparation plant is proposed. The Gabor wavelet transform is applied to the normalized original face image of coal preparation plant to obtain characteristic maps of 8 directions and 5 scales. The method encodes with the improved AR-LGC coding algorithm, and characteristic fusion is performed on the encoded maps of different directions at the same scale to obtain the fused characteristic map of the image. The fused characteristic map is divided into multiple sub-blocks, and the histogram characteristic vector H is obtained by counting the block histogram and weighting cascade. Then H is trained in residual neural network to realize the face recognition of the personnel in the coal preparation plant. The improved AR-LGC coding algorithm enhances the texture correlation of face images in coal preparation plant, solves the problem of insufficient image texture correlation, retains more important characteristics in face images while weakening the interference characteristic, and alleviates the problem of personnel faces being polluted by coal ash. The experimental results show that when the faces of coal preparation plant are polluted by coal ash, the characteristics extracted by the improved AR-LGC coding algorithm retain the local characteristics coarse granularity and have better noise immunity. The recognition rate of the improved AR-LGC coding algorithm is 94.5% and the average time consumed is 0.933 0 s. Compared with similar algorithms, the recognition rate of this algorithm has improved under the condition of sacrificing part of the time performance, and the sacrificed time performance is acceptable.
-
-
期刊类型引用(14)
1. 郗涛,王博,吴贤慧,王莉静,张建业. 基于GMM的流体旋转设备运行可靠性在线评价方法. 流体机械. 2024(02): 83-91 . 百度学术
2. 杨福瑞,赵嘉健. 复杂多变工况下高铁轮对轴承故障识别研究. 机械设计与制造工程. 2024(03): 92-96 . 百度学术
3. 张超,买买提热依木·阿布力孜. 基于EOE_LMD和阶次跟踪分析的变转速轴承故障诊断. 振动与冲击. 2024(07): 308-316 . 百度学术
4. 孙俊静,顾幸生. 基于注意力机制多尺度卷积神经网络的轴承故障诊断. 华东理工大学学报(自然科学版). 2024(02): 247-256 . 百度学术
5. 徐海涛,杨涛,周生喜. 自构建关联噪声下的随机共振及其在故障诊断上的应用. 振动与冲击. 2024(11): 297-305 . 百度学术
6. 武杰,卢振连,马洪儒,朱艳芳,吴耀春,薛晓峰,姜阔胜. 基于谐波匹配补偿和无键相阶次跟踪的轴承故障诊断. 工矿自动化. 2023(02): 125-133+140 . 本站查看
7. 魏义敏,刘辉,杨乐红. 基于角域重采样与VMD的电梯曳引轮轴承故障诊断方法. 机电工程. 2023(08): 1259-1266 . 百度学术
8. 齐晓轩,王珊. 基于角域重采样的宽度迁移学习算法. 制造技术与机床. 2023(09): 25-33 . 百度学术
9. 杨春才,李向磊,吕晓伟. 煤机设备轴承故障诊断方法. 工矿自动化. 2023(12): 147-151 . 本站查看
10. 李春锋,马星河,刘广朋. 基于改进VMD的矿用电缆局放信号降噪方法. 能源与环保. 2023(12): 268-274 . 百度学术
11. 李金才,付文龙,王仁明,陈星,孟嘉鑫. 基于深度网络的滚动轴承智能故障诊断. 工矿自动化. 2022(04): 78-88 . 本站查看
12. 蒋妮娜. 主井提升机电控系统电流和速度脉动故障分析与处理. 矿山机械. 2022(07): 24-26 . 百度学术
13. 杨晓娜,刘志远,王蔚,周佳,许亚伟,邓珂. 报修信息生命周期化采集下的电子设备故障快速诊断方法. 测试技术学报. 2022(05): 455-460 . 百度学术
14. 吴冬梅,王福齐,李贤功,唐润,张新建. 轴承智能故障诊断. 工矿自动化. 2022(09): 49-55 . 本站查看
其他类型引用(8)
计量
- 文章访问数: 139
- HTML全文浏览量: 32
- PDF下载量: 11
- 被引次数: 22