Study on weak environmental energy harvesting by shearer
-
摘要: 能量收集是将外部环境能量转换为电能的过程,在实现低功耗无线传感器的自供电方面具有一定发展潜力。目前能量收集技术在采煤机上的应用探索缺乏对能量收集系统适应性的研究,不能实现可靠应用。针对上述问题,根据采煤机的工况环境特点,分析了采煤机上可收集的微弱环境能量及将其转换为电能的可行性,指出光照能量、温差能量、振动能量作为采煤机的3种典型环境能量,由于能量特点不同,其适应性也各不相同。光照能量适应性差,不适合作为能量收集技术中的环境能量来源。温差能量来源稳定,温差发电片安装便利,具有一定的适应性,但温差发电片需安装在采煤机的主要产热部位,安装位置具有一定的局限性。振动能量总量大,压电发电片结构简单,受工况环境因素影响较小,安装位置不受限制,具有较强的适应性。Abstract: Energy harvesting is the process of converting external environmental energy into electrical energy. This technology has certain development potential in realizing self-powered low-power wireless sensors. At present, there are few researches on the adaptability of energy harvesting systems in terms of the application of energy harvesting technology in shears. Therefore, it is unable to achieve reliable applications. In order to solve the above problems, based on the characteristics of the working environment of shearer, this paper analyzes the feasibility of the weak environmental energy being harvested by shearer and the feasibility of converting the energy into electrical energy. It is pointed out that light energy, temperature difference heat energy and vibration energy are the three typical environmental energies that exist in shearer. Theses three energies have different adaptability due to different energy characteristics. Light energy has poor adaptability and is not suitable as an environmental energy source in energy harvesting technology. Temperature difference energy source is stable and the thermoelectric power generation device is easy to install. This energy has certain adaptability. However, the thermoelectric power generation device needs to be installed in the main heat producing part of shearer, and the installation location has certain restrictions. The total amount of vibration energy is large, and the piezoelectric power generation device has a simple structure. Vibration energy is less affected by the working environment factors and has a strong adaptability without installation location restrictions.
-
-
期刊类型引用(11)
1. 迟海波. 基于串并联变换的多机械臂矸石分拣系统. 煤矿安全. 2023(12): 239-245 . 百度学术
2. 曹现刚,刘思颖,王鹏,许罡,吴旭东. 面向煤矸分拣机器人的煤矸识别定位系统研究. 煤炭科学技术. 2022(01): 237-246 . 百度学术
3. 李小龙,夏云凯. 内蒙古地区易泥化动力煤干选工艺发展趋势研究. 煤炭加工与综合利用. 2022(02): 1-6+10 . 百度学术
4. 唐丽均. 模糊决策树在煤矸石分拣中的应用. 湖南工业职业技术学院学报. 2022(04): 9-12 . 百度学术
5. 张烨,马宏伟,王鹏,曹现刚,魏小荣,周文剑. 煤矸石智能分拣机器人研究进展与关键技术. 工矿自动化. 2022(12): 42-48+56 . 本站查看
6. 杜京义,史志芒,郝乐,陈瑞. 轻量化煤矸目标检测方法研究. 工矿自动化. 2021(11): 119-125 . 本站查看
7. 李素环,夏云凯. X射线块煤智能分选机在脏杂煤分选中的应用. 洁净煤技术. 2021(S2): 47-52 . 百度学术
8. 饶中钰,吴景涛,李明. 煤矸石图像分类方法. 工矿自动化. 2020(03): 69-73 . 本站查看
9. 王子军. IDS智能干选机在霍林河南露天煤矿的应用. 选煤技术. 2020(05): 56-60 . 百度学术
10. 邵尚坤,孙学鹏,杜晓光,李玉飞,王亚冰,张晓芸,刘志国,孙天希. 基于X射线透射成像及荧光双模式的珍珠检测. 光谱学与光谱分析. 2020(12): 3936-3940 . 百度学术
11. 武国平,梁兴国,胡金良,葛小冬. 图像处理和SVM应用于煤矸石分选的实验研究. 信息技术. 2019(01): 97-102+107 . 百度学术
其他类型引用(9)
计量
- 文章访问数: 74
- HTML全文浏览量: 15
- PDF下载量: 17
- 被引次数: 20