基于EMD特征提取与随机森林的煤矸识别方法

窦希杰, 王世博, 刘后广, 陈钱有, 邹文才, 卢召栋

窦希杰,王世博,刘后广,等.基于EMD特征提取与随机森林的煤矸识别方法[J].工矿自动化,2021,47(3):60-65.. DOI: 10.13272/j.issn.1671-251x.2020100038
引用本文: 窦希杰,王世博,刘后广,等.基于EMD特征提取与随机森林的煤矸识别方法[J].工矿自动化,2021,47(3):60-65.. DOI: 10.13272/j.issn.1671-251x.2020100038
DOU Xijie, WANG Shibo, LIU Houguang, CHEN Qianyou, ZOU Wencai, LU Zhaodong . Coal and gangue identification method based on EMD feature extraction and random forest[J]. Journal of Mine Automation, 2021, 47(3): 60-65. DOI: 10.13272/j.issn.1671-251x.2020100038
Citation: DOU Xijie, WANG Shibo, LIU Houguang, CHEN Qianyou, ZOU Wencai, LU Zhaodong . Coal and gangue identification method based on EMD feature extraction and random forest[J]. Journal of Mine Automation, 2021, 47(3): 60-65. DOI: 10.13272/j.issn.1671-251x.2020100038

基于EMD特征提取与随机森林的煤矸识别方法

基金项目: 

国家重点研发计划资助项目(2018YFC0604503)

江苏高校优势学科建设工程资助项目(PAPD)

详细信息
  • 中图分类号: TD821

Coal and gangue identification method based on EMD feature extraction and random forest

  • 摘要: 基于振动信号辨识是实现综放开采煤矸识别的有效手段,现有方法在识别准确性和有效性方面有待进一步研究。提出了一种基于经验模态分解(EMD)特征提取与随机森林(RF)的煤矸识别方法。采用加速度传感器及数据采集仪采集了某综放工作面煤和矸石冲击液压支架尾梁产生的振动信号,分别对2种信号进行EMD,得到一系列本征模态函数(IMF);根据EMD结果选取有效IMF,分别提取IMF能量、峭度、矩阵奇异值及对应熵作为特征向量,采用各特征向量独立训练RF模型,根据各RF模型对测试样本的识别结果筛选特征向量,并建立特征数据集;采用特征数据集训练RF模型,采用训练好的RF模型实现煤矸识别。测试结果表明:该方法对200组煤矸测试样本的识别准确率达96.5%,且当RF模型中决策树数量设置为100或150时识别准确率最高,对测试样本进行特征提取与识别的耗时不超过0.2 s,满足综放工作面煤矸识别准确性和实时性要求。
    Abstract: Identification based on vibration signals is an effective method to realize coal and gangue identification in fully mechanized mining. The existing method needs to be further studied in terms of identification accuracy and effectiveness. A coal and gangue identification method based on empirical mode decomposition(EMD) feature extraction and random forest(RF) is proposed in this study. The acceleration sensor and data acquisition instrument are used to collect the vibration signals generated by the impact of coal and gangue on the tail beam of the hydraulic support in a fully mechanized working face. Then the two signals are processed by EMD respectively so as to obtain a series of intrinsic mode functions(IMF). The effective IMFs are selected according to the EMD results, and the IMF energy, kurtosis, matrix singular values and corresponding entropy are extracted as feature vectors. Each feature vector is used to train the RF model independently. The feature vectors are filtered according to the identification results of each RF model on the test samples, and the feature data set is established. The feature data set is used to train the RF model, and the trained RF model is applied to realize the coal and gangue identification. The test results show that the identification accuracy of the method reaches 96.5% for 200 sets of coal and gangue test samples, and the highest identification accuracy is achieved when the number of decision trees in the RF model is set to 100 or 150. Furthermore, the time consumed for feature extraction and identification of test samples is less than 0.2 s, which meets the requirements of accuracy and real time of coal and gangue identification in fully mechanized working face.
  • 期刊类型引用(7)

    1. 蔡敏博,李帅. 近距离煤层群保护层开采卸压瓦斯治理技术研究. 煤炭科技. 2023(04): 162-166 . 百度学术
    2. 黄兴. 近距离煤层群保护层开采底板卸压及效果考察. 中国矿山工程. 2022(04): 45-50 . 百度学术
    3. 秦汝祥,杨珂,程健. 上保护层开采卸压保护范围研究. 工矿自动化. 2021(11): 81-87 . 本站查看
    4. 谢小平,刘晓宁,梁敏富. 基于UDEC数值模拟实验的保护层无煤柱全面卸压开采分析. 煤矿安全. 2020(02): 208-212 . 百度学术
    5. 韩飞林,郑春山,薛生,王志根,王永. 首采煤层开采诱发底板应力场分布特征研究. 煤矿安全. 2020(12): 263-269 . 百度学术
    6. 聂凤祥,郭海峰. 潘西煤矿低瓦斯煤层喷孔动力显现规律研究. 工矿自动化. 2019(03): 12-17 . 本站查看
    7. 韩泉胜,丁江海,李思乾. 远距离煤层开采保护范围确定及效果分析. 能源技术与管理. 2019(04): 86-88 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  259
  • HTML全文浏览量:  28
  • PDF下载量:  37
  • 被引次数: 13
出版历程
  • 刊出日期:  2021-03-19

目录

    /

    返回文章
    返回