基于Q-learning模型的智能化放顶煤控制策略

李庆元, 杨艺, 李化敏, 费树岷

李庆元 ,杨艺 ,李化敏,等.基于Q-learning模型的智能化放顶煤控制策略[J].工矿自动化,2020,46(1):72-79.. DOI: 10.13272/j.issn.1671-251x.2019110001
引用本文: 李庆元 ,杨艺 ,李化敏,等.基于Q-learning模型的智能化放顶煤控制策略[J].工矿自动化,2020,46(1):72-79.. DOI: 10.13272/j.issn.1671-251x.2019110001
LI Qingyuan, YANG Yi, LI Huamin, FEI Shumin. Intelligent control strategy for top coal caving based on Q-learning model[J]. Journal of Mine Automation, 2020, 46(1): 72-79. DOI: 10.13272/j.issn.1671-251x.2019110001
Citation: LI Qingyuan, YANG Yi, LI Huamin, FEI Shumin. Intelligent control strategy for top coal caving based on Q-learning model[J]. Journal of Mine Automation, 2020, 46(1): 72-79. DOI: 10.13272/j.issn.1671-251x.2019110001

基于Q-learning模型的智能化放顶煤控制策略

基金项目: 

国家重点研发计划项目(2018YFC0604502)

河南省高等学校重点科研项目(19A413008,17A480007)

河南省科技项目(192102210100,172102210270)

详细信息
  • 中图分类号: TD823.97

Intelligent control strategy for top coal caving based on Q-learning model

  • 摘要: 传统的综放工作面放顶煤控制存在顶煤采出率低、出煤含矸率高等问题,而现有智能决策方法又存在建模困难、学习样本难以获取等障碍。针对上述问题,在液压支架放煤口动作决策过程中引入强化学习思想,提出一种基于Q-learning模型的智能化放顶煤控制策略。以最大化放煤效益为主要目标,结合顶煤放出体实时状态特征及顶煤动态赋存状态,采用基于Q-learning的放顶煤动态决策算法,在线生成多放煤口实时动作策略,优化多放煤口群组协同放煤过程,合理平衡顶煤采出率、出煤含矸率的关系。仿真和对比分析结果表明,该控制策略的顶煤平均采出率为91.24%,比传统“见矸关窗”的放煤方法提高约15.8%;平均全局奖赏值为685,比传统放煤方法提高约11.2%。该控制策略可显著减少混矸、夹矸等现象对放煤过程的影响,提高顶煤放出效益,减少煤炭资源浪费。
    Abstract: Traditional top coal caving control on fully mechanized caving face has problems of low top coal recovery ratio and high gangue proportion,and existing intelligent decision-making methods have obstacles such as difficulty in modeling and obtaining learning samples. In view of above problems,the idea of reinforcement learning was introduced into the decision-making process of coal outlet of hydraulic support,and an intelligent control strategy for top coal caving based on Q-learning model was proposed.With the main goal of maximizing the benefits of coal caving combined with real-time state characteristics of top coal release and dynamic occurrence status of top coal,a dynamic decision-making algorithm based on Q-learning is used to generate real-time action strategy of multiple coal outlets online, and optimize cooperative coal caving process of multiple coal outlets,reasonably balance relationship between top coal recovery ratio and gangue proportion. The results of simulation and comparative analysis show that the average recovery ratio of top coal of the proposed control strategy is 91.24%,which is about 15.8% higher than that of the traditional coal caving method; the average global reward value is 685,which is about 11.2% higher than that of the traditional coal caving method. The proposed control strategy can significantly reduce the impact of coal and gangue mixed phenomena on the coal caving process,improve efficiency of top coal discharge,and reduce waste of coal resources.
  • 期刊类型引用(9)

    1. 杜修宪. 葫芦素选煤厂智能化建设与应用. 煤炭加工与综合利用. 2023(07): 29-32+36 . 百度学术
    2. 王国法,任怀伟,赵国瑞,巩师鑫,杜毅博,薛忠新,庞义辉,张潇. 智能化煤矿数据模型及复杂巨系统耦合技术体系. 煤炭学报. 2022(01): 61-74 . 百度学术
    3. 曹艳军,乔治忠,刘安重. 煤炭洗选智能化建设思路与路径探索. 露天采矿技术. 2022(04): 78-81 . 百度学术
    4. 郭清杰,张伟. 煤炭计质计量智能管控关键技术的研究与应用. 煤炭加工与综合利用. 2022(09): 17-20+25 . 百度学术
    5. 曹现刚,段欣宇,张梦园,雷卓,李彦川. 煤矿设备状态监测系统设计. 工矿自动化. 2021(05): 101-105 . 本站查看
    6. 肖松,赵康. 融合通信技术在巴拉素煤矿的应用. 陕西煤炭. 2021(S2): 143-145+149 . 百度学术
    7. 刘文义,李丽,周辉,王文青,周聪. 地震4.0——新一代智能地震技术体系SCPS. 地震地磁观测与研究. 2020(02): 1-14 . 百度学术
    8. 张聪瑞,杨旭春,王树勋,黄刚. 高海拔矿山井下运输环境感知技术研究. 金属矿山. 2020(10): 111-117 . 百度学术
    9. 李敬兆,孟亦凡,王继伟. 矿山多层级安全态势感知系统. 工矿自动化. 2020(12): 1-6 . 本站查看

    其他类型引用(3)

计量
  • 文章访问数:  99
  • HTML全文浏览量:  12
  • PDF下载量:  20
  • 被引次数: 12
出版历程
  • 刊出日期:  2020-01-19

目录

    /

    返回文章
    返回