Research on a bearing early fault features extraction method
-
摘要: 针对滚动轴承早期故障信号被背景噪声淹没、故障特征不明显的问题,提出一种基于小波包分解和互补集合经验模态分解(CEEMD)的轴承早期故障信号特征提取方法。利用Matlab软件对采集到的轴承振动信号进行快速谱峭度分析,根据峭度最大化原则确定带通滤波器的中心频率和带宽,设计带通滤波器;对经过带通滤波器滤波后的信号进行小波包分解和CEEMD分解,根据峭度、相关系数筛选出有效本征模态函数(IMF)分量;利用IMF分量重构小波包信号,对重构小波包信号进行包络谱分析,提取轴承早期故障信号特征频率。该方法通过谱峭度分析降低背景噪声干扰,通过小波包分解增强故障冲击信号,并将CEEMD与小波包分解相结合,解决经典EMD分解存在的模态混叠、无效分量问题。仿真结果表明,相较于传统包络解调算法,重构后信号的背景噪声得到抑制,故障特征分量突出,验证了所提方法的可行性和有效性。Abstract: In view of problems that early fault signals of rolling bearings are submerged by background noise and fault characteristics are not obvious, a bearing early fault feature extraction method based on wavelet packet decomposition and CEEMD was proposed. Matlab software is used to perform rapid spectral kurtosis analysis on the collected vibration signals, and the center frequency and bandwidth of the band-pass filter is determined according to maximum kurtosis principle and used to design the band-pass filter. Wavelet packet decomposition and CEEMD decomposition are perform to the signal filtered by the band-pass filter, and effective intrinsic modal function (IMF) components are selected according to the kurtosis and correlation coefficient and used to reconstruct the wavelet packet signal. Characteristic frequency of bearing early fault signal is extracted by envelope spectrum analysis of the reconstructed wavelet packet signal. The method reduces background noise interference through spectral kurtosis analysis, enhances the fault impact signal through wavelet packet decomposition, and combines CEEMD with wavelet packet decomposition to solve the problem of modal aliasing and invalid components in classical EMD decomposition. The simulation results show that compared with traditional envelope demodulation algorithm, the background noise of the reconstructed signal is suppressed and the fault feature component is prominent, which verifies the feasibility and effectiveness of the proposed method.
-
-
期刊类型引用(8)
1. 蒋水华,余琦,黄河,常志璐,孟京京. 岩质高边坡结构面识别及产状统计信息采集方法. 工矿自动化. 2024(07): 156-164 . 本站查看
2. 赵清,杨维,张立亚,胡青松. 灾后煤矿物联网无人机辅助节能数据采集方法. 煤炭科学技术. 2023(08): 228-238 . 百度学术
3. 高海跃,王凯,王保兵,王丹丹. 基于全局点云地图的煤矿井下无人机定位方法. 工矿自动化. 2023(08): 81-87+133 . 本站查看
4. 郭爱军,王妙云,马宏伟,张旭辉,薛旭升,杜昱阳,张超. 煤矿井下多旋翼飞行器避障控制方法研究. 工矿自动化. 2022(12): 93-100 . 本站查看
5. 侯刚. 煤矿无人机智能系统设计与实现. 煤炭工程. 2021(02): 19-23 . 百度学术
6. 张力,马宏伟,梁艳,薛旭升. 煤矿四旋翼巡检机器人系统设计. 煤炭工程. 2021(02): 180-185 . 百度学术
7. 张瑞宾,郭应时,陈元华,刘晓刚,周扬. 基于激光雷达点法向量的车辆实时位姿估计. 汽车技术. 2021(05): 36-40 . 百度学术
8. 马宏伟,聂珍,王川伟,薛旭升,夏晶. 煤矿机器人关键共性技术与发展策略. 智能矿山. 2020(01): 63-70 . 百度学术
其他类型引用(6)
计量
- 文章访问数: 115
- HTML全文浏览量: 18
- PDF下载量: 17
- 被引次数: 14