基于聚类和K近邻算法的井下人员定位算法

莫树培, 唐琎, 汪郁, 赖普坚, 金礼模

莫树培,唐琎,汪郁,等.基于聚类和K近邻算法的井下人员定位算法[J].工矿自动化,2019,45(4):43-48.. DOI: 10.13272/j.issn.1671-251x.2018110072
引用本文: 莫树培,唐琎,汪郁,等.基于聚类和K近邻算法的井下人员定位算法[J].工矿自动化,2019,45(4):43-48.. DOI: 10.13272/j.issn.1671-251x.2018110072
MO Shupei, TANG Jin, WANG Yu, LAI Pujian, JIN Limo. Underground personnel positioning algorithm based on clustering and K-nearest neighbor algorithm[J]. Journal of Mine Automation, 2019, 45(4): 43-48. DOI: 10.13272/j.issn.1671-251x.2018110072
Citation: MO Shupei, TANG Jin, WANG Yu, LAI Pujian, JIN Limo. Underground personnel positioning algorithm based on clustering and K-nearest neighbor algorithm[J]. Journal of Mine Automation, 2019, 45(4): 43-48. DOI: 10.13272/j.issn.1671-251x.2018110072

基于聚类和K近邻算法的井下人员定位算法

基金项目: 

贵州省科技厅项目(黔科合LH字〔2016〕7069)

贵州工业职业技术学院校级科研课题(2018009)

详细信息
  • 中图分类号: TD655.3

Underground personnel positioning algorithm based on clustering and K-nearest neighbor algorithm

  • 摘要: 针对现有基于指纹模的井下定位算法存在的计算量大、实时性低、定位精度较低的问题,提出了基于聚类和K近邻算法的井下人员定位算法。用二分k-means聚类算法对采集的RSSI数据进行分类,建立离线指纹数据库;无线移动终端和动态修正器实时采集RSSI值,分别存储到在线定位数据库和动态修正数据库;根据待测点和动态修正器的离线数据和实时数据,采用软硬件动态修正加权K近邻算法计算权重值,结合离线指纹数据库中待测点的物理位置信息估算其实时位置。实验分析结果表明,所提定位算法的最小标准误差为0.46 m,最大标准误差为3.26 m,平均误差为1.62 m。对比分析结果表明,与未进行聚类分析的算法相比,本文算法的精度更高,实时性更好;与未动态修正权重值的算法相比,本文算法的运算时间略有增加,但定位精度提高了37.21%。
    Abstract: In view of problems of large amount of calculation, low real-time performance and low positioning accuracy of existing fingerprint-based underground positioning algorithm, underground personnel positioning algorithm based on clustering and K-nearest neighbor algorithm was proposed. Bisecting k-means clustering algorithm is used to classify collected RSSI data to establish an offline fingerprint database. Real time RSSI values are collected by wireless mobile terminal and dynamic corrector and stored in online positioning database and dynamic correction database respectively. According to offline data and real-time data, weight value is calculated using software and hardware dynamic correction weighted K-nearest neighbor algorithm, and real-time position is estimated by combining the physical location information of the point to be measured in the offline fingerprint database. The example analysis results show that the minimum standard error of the proposed positioning algorithm is 0.46 m, the maximum standard error is 3.26 m, and the average error is 1.62 m. The results of comparative analysis show that the proposed algorithm has higher precision and better real-time performance than the algorithm without clustering analysis. Compared with the algorithm without dynamic correction of weights, the computation time of the proposed algorithm is slightly increased, but the positioning accuracy is increased by 37.21%.
  • 期刊类型引用(13)

    1. 芦宝娟,赵大磊,徐广允. 改进卡尔曼滤波的井下组合导航定位算法. 计算机应用与软件. 2022(03): 139-145 . 百度学术
    2. 方锦文,何晋乐,许潼歆. 个性化高校信息推送方案研究. 信息与电脑(理论版). 2022(07): 171-173 . 百度学术
    3. 李佶骏,谭顺华. 基于Wi-Fi的室外人员定位系统的研究与设计. 计算机应用与软件. 2022(08): 145-149+203 . 百度学术
    4. 姜维汉,毛海龙. 能源企业井下人员精确定位方法. 化学工程与装备. 2022(09): 180-181+171 . 百度学术
    5. 赵宇. Elman神经网络数据模型在井下人员定位系统的应用. 煤矿机电. 2021(02): 45-49+53 . 百度学术
    6. 王正宏. 基于RSSI测距的监狱人员定位算法改进. 现代信息科技. 2021(15): 36-39 . 百度学术
    7. 莫树培,唐琎,李国良,陈明,金礼模,周龙龙,朱超,赵大磊. 混沌粒子群优化神经网络的井下人员无线定位方法研究. 传感技术学报. 2020(03): 456-463 . 百度学术
    8. 刘夏,李国良,张灵峰,汪郁,孙虎,黄启能,丁琼. 一种井下人员无线定位算法研究. 工矿自动化. 2020(04): 38-45 . 本站查看
    9. 刘夏,莫树培,罗浩,陈明. K-means++和WKNN自适应指纹算法在井下定位系统中的应用研究. 计算机应用与软件. 2020(06): 88-94 . 百度学术
    10. 张宁,张幼振,姚克. 一种含煤地层岩性优化识别方法. 工矿自动化. 2020(07): 100-106 . 本站查看
    11. 支祖利. 定位技术在校内学生管理中的应用研究. 产业科技创新. 2020(24): 65-66 . 百度学术
    12. 郝利军,张丽杰. 改进WKNN结合最大熵CQKF的室内定位方法. 电子测量技术. 2020(23): 46-50 . 百度学术
    13. 刘夏,莫树培. 改进克里金插值算法的井下无线定位指纹库构建方法. 传感技术学报. 2019(07): 1100-1106 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  64
  • HTML全文浏览量:  9
  • PDF下载量:  16
  • 被引次数: 20
出版历程
  • 刊出日期:  2019-04-19

目录

    /

    返回文章
    返回