矿用带式输送机齿轮箱混合故障诊断研究

杨云, 熊继军, 宋要斌, 马利云, 王向玲

杨云,熊继军,宋要斌,等.矿用带式输送机齿轮箱混合故障诊断研究[J].工矿自动化,2019,45(5):51-55.. DOI: 10.13272/j.issn.1671-251x.2018110004
引用本文: 杨云,熊继军,宋要斌,等.矿用带式输送机齿轮箱混合故障诊断研究[J].工矿自动化,2019,45(5):51-55.. DOI: 10.13272/j.issn.1671-251x.2018110004
YANG Yun, XIONG Jijun, SONG Yaobin, MA Liyun, WANG Xiangling. Research on mixed-fault diagnosis of mine-used belt conveyor gearbox[J]. Journal of Mine Automation, 2019, 45(5): 51-55. DOI: 10.13272/j.issn.1671-251x.2018110004
Citation: YANG Yun, XIONG Jijun, SONG Yaobin, MA Liyun, WANG Xiangling. Research on mixed-fault diagnosis of mine-used belt conveyor gearbox[J]. Journal of Mine Automation, 2019, 45(5): 51-55. DOI: 10.13272/j.issn.1671-251x.2018110004

矿用带式输送机齿轮箱混合故障诊断研究

基金项目: 

国家高技术研究发展计划(863计划)项目(2015AA042601)

吕梁市引进高层次科技人才重点研发项目(2017-011-06)。

详细信息
  • 中图分类号: TD634

Research on mixed-fault diagnosis of mine-used belt conveyor gearbox

  • 摘要: 针对基于振动信号分析的矿用带式输送机齿轮箱故障诊断方法存在不易处理混合故障信号的问题,提出了一种基于自组织映射网络的矿用带式输送机齿轮箱混合故障诊断方法。采用融入Shannon熵的小波阈值去噪方法对矿用带式输送机齿轮箱的标准多故障样本进行预处理,对预处理后的标准多故障样本建立高斯混合分布模型后,采用最大期望算法进行模型的参数估计,得到相应特征向量并输入自组织映射网络,自组织映射网络对不同混合故障类型的故障信号进行聚类和识别,从而判断故障类别。实验结果表明,该方法能有效诊断出矿用带式输送机齿轮箱的多故障混合信号对应的故障类别,整体诊断准确率为88%,在6种工况下诊断准确率为100%,为矿山机电设备的齿轮箱故障诊断提供了一种新方法。
    Abstract: In view of problem that fault diagnosis methods of mine-used belt conveyor gearbox based on vibration signal analysis are not easy to process mixed-fault signals, a new mixed-fault diagnosis method of mine-used belt conveyor gearbox based on self-organizing map network was proposed. The standard multi-fault samples of mine-used belt conveyor gearbox are pre-processed by wavelet threshold denoising method incorporating Shannon entropy,Gaussian mixture distribution model is established for the standard multi-fault samples after pre-treatment, and the expectation-maximization algorithm is used to estimate the parameters of the model to obtain corresponding feature vectors which are input into the self-organizing map network. At last, the fault signals of different fault types are clustered and identified by self-organizing map network to determine the fault category. The test results show that the method can effectively diagnose the fault type of mine-used belt conveyor gearbox, and the overall accuracy of the diagnostic method is 88%, and the accuracy under six conditions is 100%. It provides a new method for gearbox fault diagnosis of mine electromechanical equipment.
  • 期刊类型引用(8)

    1. 吴景红. 煤矿机械故障诊断研究现状及发展趋势. 煤炭工程. 2023(06): 187-192 . 百度学术
    2. 周坪,马国庆,周公博,马天兵,李远博. 智能化带式输送机健康监测技术研究综述. 仪器仪表学报. 2023(12): 1-21 . 百度学术
    3. 王艳双,王建华,任磊,史更新,彭程程,臧廷朋,肖望强. 基于VMD的带式输送机齿轮箱故障诊断. 煤矿机械. 2022(10): 177-179 . 百度学术
    4. 王大维. 关于矿用带式输送机使用中的动态分析. 煤矿现代化. 2020(02): 166-168 . 百度学术
    5. 袁慧娟,陈兴隆. 基于SOM网络的带式输送机齿轮箱混合故障诊断研究. 煤矿机械. 2020(05): 192-195 . 百度学术
    6. 刘建英. 云岗矿中B1400型带式输送机绳轮支座结构性能研究. 煤矿现代化. 2020(04): 114-116 . 百度学术
    7. 沈建明,石云飞. 基于故障树的带式输送机齿轮箱故障诊断. 煤矿机械. 2020(11): 151-153 . 百度学术
    8. 张金红,王菲菲,武玉英. GA-BP神经网络在带式输送机故障监测系统中的应用. 煤矿机械. 2020(12): 129-131 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  48
  • HTML全文浏览量:  10
  • PDF下载量:  11
  • 被引次数: 10
出版历程
  • 刊出日期:  2019-05-19

目录

    /

    返回文章
    返回