综采设备多元预警管理系统设计

杨睿, 曹凯, 王继宇

杨睿,曹凯,王继宇.综采设备多元预警管理系统设计[J].工矿自动化,2018,44(7):96-99.. DOI: 10.13272/j.issn.1671-251x.2018040063
引用本文: 杨睿,曹凯,王继宇.综采设备多元预警管理系统设计[J].工矿自动化,2018,44(7):96-99.. DOI: 10.13272/j.issn.1671-251x.2018040063
YANG Rui, CAO Kai, WANG Jiyu. Design of multivariate early warning management system for fully-mechanized coal mining equipment[J]. Journal of Mine Automation, 2018, 44(7): 96-99. DOI: 10.13272/j.issn.1671-251x.2018040063
Citation: YANG Rui, CAO Kai, WANG Jiyu. Design of multivariate early warning management system for fully-mechanized coal mining equipment[J]. Journal of Mine Automation, 2018, 44(7): 96-99. DOI: 10.13272/j.issn.1671-251x.2018040063

综采设备多元预警管理系统设计

详细信息
  • 中图分类号: TD67

Design of multivariate early warning management system for fully-mechanized coal mining equipment

  • 摘要: 针对目前综采设备管理方式存在准确性差、效率低、时效性差等问题,设计了一种综采设备多元预警管理系统。该系统通过采集设备、人员、生产、工作面等多元数据,全面分析设备事故、设备异常及维护、设备修理及更换等数据规律,综合评估设备运行状况,实现对设备事故的预警预报、有计划地主动检修、备品配件采购指导。该系统有效降低了综采设备故障率,提高了企业的设备管理水平。
    Abstract: In view of problems of low accuracy, low efficiency and poor timeliness in current management mode of fully-mechanized coal mining equipment, a multivariate early warning management system for fully-mechanized coal mining equipment was designed. The system comprehensively analyzes data rules of equipment accident, equipment abnormality and maintenance, equipment repair and replacement and evaluates equipment operation state by collecting multivariate data from equipmen, personnel, production and working face, so as to realize early warning and prediction of equipment accident, planned active maintenance and spare parts procurement guidance. The system effectively reduces failure rate of fully-mechanized coal mining equipment and improves equipment management level of enterprise.
  • 期刊类型引用(6)

    1. 焦玉冰,李杰,马喜宏,郭肖亭,冯凯强. 一种采煤机截割部滚动轴承故障诊断方法. 计算机测量与控制. 2023(05): 73-79 . 百度学术
    2. 孙晓春,丁华,牛锐祥,王焱. 基于LW-DenseNet的采煤机摇臂齿轮故障诊断. 煤炭工程. 2023(11): 186-192 . 百度学术
    3. 王岩,曹现刚,张旭辉,樊红卫,段雍,霍小泉. 基于知识图谱的采煤机智能维护知识库构建. 工矿自动化. 2021(07): 29-36 . 本站查看
    4. 张继旺,丁克勤,王洪柱. 基于VMD-CNN的滚动轴承早期微弱故障智能诊断方法. 组合机床与自动化加工技术. 2020(11): 15-19 . 百度学术
    5. 樊红卫,张旭辉,曹现刚,万翔,杨一晴. 智慧矿山背景下我国煤矿机械故障诊断研究现状与展望. 振动与冲击. 2020(24): 194-204 . 百度学术
    6. 张雷,赵彤,李先圣,刘晓文. 井下人员违规进入无源监测方法. 工矿自动化. 2018(10): 29-33 . 本站查看

    其他类型引用(9)

计量
  • 文章访问数:  64
  • HTML全文浏览量:  15
  • PDF下载量:  11
  • 被引次数: 15
出版历程
  • 刊出日期:  2018-07-09

目录

    /

    返回文章
    返回