基于机器视觉的电铲斗齿缺失检测方法

段宇秀, 杜文华, 曾志强, 王日俊, 段能全, 李晓男

段宇秀,杜文华,曾志强,等.基于机器视觉的电铲斗齿缺失检测方法[J].工矿自动化,2018,44(7):75-80.. DOI: 10.13272/j.issn.1671-251x.2018030006
引用本文: 段宇秀,杜文华,曾志强,等.基于机器视觉的电铲斗齿缺失检测方法[J].工矿自动化,2018,44(7):75-80.. DOI: 10.13272/j.issn.1671-251x.2018030006
DUAN Yuxiu, DU Wenhua, ZENG Zhiqiang, WANG Rijun, DUAN Nengquan, LI Xiaona. Electric bucket teeth missing detection method based on machine visio[J]. Journal of Mine Automation, 2018, 44(7): 75-80. DOI: 10.13272/j.issn.1671-251x.2018030006
Citation: DUAN Yuxiu, DU Wenhua, ZENG Zhiqiang, WANG Rijun, DUAN Nengquan, LI Xiaona. Electric bucket teeth missing detection method based on machine visio[J]. Journal of Mine Automation, 2018, 44(7): 75-80. DOI: 10.13272/j.issn.1671-251x.2018030006

基于机器视觉的电铲斗齿缺失检测方法

基金项目: 

山西省自然科学基金项目(201601D102025)

中北大学自然科学研究基金项目(XJJ2016007)

详细信息
  • 中图分类号: TD67

Electric bucket teeth missing detection method based on machine visio

  • 摘要: 针对现有电铲斗齿检测方法存在实时性较差、误报率较高等问题,提出了一种基于机器视觉的电铲斗齿缺失检测方法。该方法利用红外热像仪采集铲斗图像,基于模板匹配原理对复杂背景下斗齿的目标区域进行准确定位,利用帧差法实现斗齿的运动检测;在目标区域已定位的基础上,结合斗齿齿线区域的位置关系与齿线结构特征对斗齿进行分割提取,通过自适应阈值,实现对缺失斗齿的检测。实验结果表明,该方法实现了对电铲斗齿缺失的实时、在线、快速、准确检测,检测准确率达到90%以上,为电铲斗齿缺失检测提供了一种有效的解决方法。
    Abstract: In view of problems of lower real-time performance and higher false rate of existing detection methods of electric bucket teeth, an electric bucket teeth missing detection method based on machine vision was put forward. The method uses infrared thermal imager to collect bucket image, adopts template matching principle to accurately locate target area of bucket teeth under complicated background, and uses frame differential method to realize motion detection of bucket teeth. On the basis of location of the target area, the bucket teeth are segmented and extracted combined with location relation of the bucket teeth line area and the teeth line structure characteristics, so as to detect missing bucket teeth according to self-adaptive threshold. The experimental results show that the method can effectively realize real-time on-line, rapid and accurate detection of the missing teeth of the electric bucket, detection accuracy is more than 90%, which provides an effective solution for electric bucket teeth missing detection.
  • 期刊类型引用(7)

    1. 吴立活. 大型露天采矿场铲装工艺过程数字化转型研究与实践:以拉斯邦巴斯采矿场为例. 中国矿业. 2024(12): 189-197 . 百度学术
    2. 卢进南,刘扬,王连捷,黎洛. 基于改进YOLOX的电铲铲齿断裂检测方法. 电子测量与仪器学报. 2023(05): 46-57 . 百度学术
    3. 姚江,王智强,李忠华,马连成,薛印波,李晓亮,翟磊,王凯富. 基于SSD算法的矿用电铲铲斗健康监测方法. 中国矿业. 2023(08): 80-88 . 百度学术
    4. 魏效玲,崔岳,王国锋. 基于机器视觉的铣刀侧铣磨损测量. 组合机床与自动化加工技术. 2021(01): 88-91 . 百度学术
    5. 丁瑞元. 斗齿检测系统在露天煤矿WK-35采煤电铲上的应用. 煤炭工程. 2020(06): 107-110 . 百度学术
    6. 魏效玲,崔岳,王晓鹏. 基于机器视觉的轮齿缺陷检测研究. 煤矿机械. 2020(09): 35-37 . 百度学术
    7. 田军,李明,姜瑾,朱美强,雷萌. 选煤厂水泵闸板阀开度线激光辅助视觉监控. 工矿自动化. 2020(09): 79-82+93 . 本站查看

    其他类型引用(4)

计量
  • 文章访问数:  164
  • HTML全文浏览量:  14
  • PDF下载量:  22
  • 被引次数: 11
出版历程
  • 刊出日期:  2018-07-09

目录

    /

    返回文章
    返回