DHNN模型在岩爆烈度分级预测中的应用研究

徐佳, 陈俊智, 刘晨毓, 王佳信, 龙刚, 李春义

徐佳,陈俊智,刘晨毓,等.DHNN模型在岩爆烈度分级预测中的应用研究[J].工矿自动化,2018,44(1):84-88.. DOI: 10.13272/j.issn.1671-251x.2017050027
引用本文: 徐佳,陈俊智,刘晨毓,等.DHNN模型在岩爆烈度分级预测中的应用研究[J].工矿自动化,2018,44(1):84-88.. DOI: 10.13272/j.issn.1671-251x.2017050027
XU Jia, CHEN Junzhi, LIU Chenyu, WANG Jiaxin, LONG Gang, LI Chunyi. Application research of DHNN model in prediction of classification of rockburst intensity[J]. Journal of Mine Automation, 2018, 44(1): 84-88. DOI: 10.13272/j.issn.1671-251x.2017050027
Citation: XU Jia, CHEN Junzhi, LIU Chenyu, WANG Jiaxin, LONG Gang, LI Chunyi. Application research of DHNN model in prediction of classification of rockburst intensity[J]. Journal of Mine Automation, 2018, 44(1): 84-88. DOI: 10.13272/j.issn.1671-251x.2017050027

DHNN模型在岩爆烈度分级预测中的应用研究

基金项目: 

国家自然科学基金资助项目(U1602232)

详细信息
  • 中图分类号: TD31

Application research of DHNN model in prediction of classification of rockburst intensity

  • 摘要: 针对现有岩爆预测方法权重的确定带有随意性和主观性问题,提出了一种岩爆烈度分级预测的离散Hopfield神经网络(DHNN)模型。该模型选取应力系数、岩石脆性系数及弹性能量指数作为评价指标,将岩爆等级分为强岩爆、中等岩爆、弱岩爆及无岩爆4级,然后进行编码,不需要对样本数据进行归一化处理,只需转换成“1”和“-1”的二值型模式,编码简单,网络迭代次数少,具有很好的联想记忆功能,使岩爆烈度分级预测更加科学合理,可为深部地下工程岩爆烈度分级预测提供一种新途径。典型岩爆工程实例预测结果证明了该模型的正确性。
    Abstract: In view of problems of randomness and subjectivity in determining weight of existing rockburst prediction methods,a discrete Hopfield neural network (DHNN) model for prediction of classification of rockburst intensity was proposed。The model selects stress coefficient, rockbrittleness coefficient and elastic energy index as evaluation index, divides rockburst grade into 4 stages, such as strong rockburst, medium rockburst, weak rockburst and no rockburst, then encodes them. The model need't normalize sample data with simpler encoding ,lesser iterations of network and better associative memory ability, only be converted to "1" and "-1" of the two value model, therefore, the classification prediction of rockburst intensity is more scientific and reasonable. The model can provide a new way for classification prediction of rockburst intensity in deep underground engineering. The prediction results of typical rockburst engineering examples prove the correctness of the model.
  • 期刊类型引用(5)

    1. 张凯. 液压支架自动化后人工调控策略推荐系统. 山西焦煤科技. 2024(02): 33-36+41 . 百度学术
    2. 刘萌,付翔,姜玉龙,刘彬,杨宇琪,秦一凡,孙岩. 液压支架姿态数字孪生精准快速映射方法. 工矿自动化. 2024(06): 136-141+158 . 本站查看
    3. 虞婧,魏红磊,周亘儒,孟龙,陈浩. 基于数字孪生技术的低碳选煤厂能源监控平台应用研究. 煤炭工程. 2024(12): 12-18 . 百度学术
    4. 王栎淇,范维,陈传军,李森,付文阳. 基于实时数据驱动的车间输送线数字孪生系统研究与实现. 制造业自动化. 2023(08): 171-177 . 百度学术
    5. 鲍久圣,张可琨,王茂森,阴妍,杨磊,葛世荣. 矿山数字孪生MiDT:模型架构、关键技术及研究展望. 绿色矿山. 2023(01): 166-177 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  69
  • HTML全文浏览量:  7
  • PDF下载量:  9
  • 被引次数: 6
出版历程
  • 刊出日期:  2018-01-09

目录

    /

    返回文章
    返回