基于数据驱动的矿井主排水设备寿命预测方法

郭文琪, 宋建成, 田慕琴

郭文琪,宋建成,田慕琴.基于数据驱动的矿井主排水设备寿命预测方法[J].工矿自动化,2017,43(11):39-48.. DOI: 10.13272/j.issn.1671-251x.2017.11.009
引用本文: 郭文琪,宋建成,田慕琴.基于数据驱动的矿井主排水设备寿命预测方法[J].工矿自动化,2017,43(11):39-48.. DOI: 10.13272/j.issn.1671-251x.2017.11.009
GUO Wenqi, SONG Jiancheng, TIAN Muqin. Life prediction methods of mine main drainage equipment based on data drive[J]. Journal of Mine Automation, 2017, 43(11): 39-48. DOI: 10.13272/j.issn.1671-251x.2017.11.009
Citation: GUO Wenqi, SONG Jiancheng, TIAN Muqin. Life prediction methods of mine main drainage equipment based on data drive[J]. Journal of Mine Automation, 2017, 43(11): 39-48. DOI: 10.13272/j.issn.1671-251x.2017.11.009

基于数据驱动的矿井主排水设备寿命预测方法

基金项目: 

山西省科技重大专项项目(20131101029)

详细信息
  • 中图分类号: TD636

Life prediction methods of mine main drainage equipment based on data drive

  • 摘要: 以矿井排水系统的离心泵为研究对象,介绍了包括机器学习方法、多元统计分析方法、特征量提取方法和信息融合方法在内的4种基于数据驱动的矿井主排水设备寿命预测方法的基本原理、相关案例、优缺点、尚未解决的问题及其在离心泵寿命预测中的应用;指出了离心泵寿命预测的发展趋势:寿命衰退指标应多样化,只有离心泵的各类指标正常,才能表明离心泵运行正常,多变量综合考虑使预测可靠性更高; 决策层信息应高度融合,振动信号、动态摩擦力矩、扬程等因素都会随着寿命的衰退发生一定的变化,将这些信息融合用于寿命预测,效果会更好; 融合特征层信息,将多种预测模型进行融合,或者建立一个集更多优点于一体的混合模型,才能更好地满足工业要求。
    Abstract: Taking centrifugal pump of mine drainage system as research object, the paper introduced basic principles, related cases, advantages and disadvantages, unsolved problems of four kinds of life prediction methods based on data driven, namely machine learning method, multivariate statistical analysis method, characteristic extracting method and information fusion method, and expounded their applications in centrifugal pump life prediction. Meanwhile it pointed out development trend of the centrifugal pump life prediction: life recession index should be diversified, and all kinds of normal centrifugal pump indexes show that the centrifugal pump works normally, the more comprehensive consideration, the higher the prediction reliability; decision layer information should be highly integrated, and factors such as vibration signal, dynamic friction torque and pump head will change with decay of life, so results will be better to fuse these information into life prediction; feature layer information should be integrated, and integrating various prediction models or establishing a hybrid model with many advantages can better meet industrial requirements.
  • 期刊类型引用(9)

    1. 王珠,吴岩松,王少贤,王若暄. 炼化装置中检测仪表与执行机构的异常诊断. 化工自动化及仪表. 2023(01): 88-94 . 百度学术
    2. 贾超红,陈惠英,田慕琴,宋建成,陈鑫. 主排水泵寿命预测研究. 煤矿机械. 2022(08): 196-198 . 百度学术
    3. 林扬,何亚东,袁壮,武传朋,苟成冬,李传坤. 基于PCA-SVDD的化工过程异常工况检测. 过程工程学报. 2022(07): 970-978 . 百度学术
    4. 洪恩雨,鲍裕光,刘明. 基于灰色卡尔曼的排水离心泵剩余寿命预测. 自动化仪表. 2021(05): 37-40 . 百度学术
    5. 王炳波,刘赓传. 基于无迹卡尔曼滤波的离心泵剩余寿命研究. 石油机械. 2021(11): 31-38 . 百度学术
    6. 黄雪花. 基于监控组态技术的电气自动化设备状态智能控制方法. 自动化与仪器仪表. 2020(08): 190-193 . 百度学术
    7. 贾虎强. 基于物联网的矿井自动排水系统健康管理平台设计. 煤矿现代化. 2019(02): 123-125+128 . 百度学术
    8. 林福忠. 物理实验室高能耗仪器设备损坏率预测仿真. 计算机仿真. 2019(03): 235-238+306 . 百度学术
    9. 肖楠. 基于物联网的矿井自动排水系统管理平台设计. 煤矿机械. 2018(11): 152-154 . 百度学术

    其他类型引用(10)

计量
  • 文章访问数:  107
  • HTML全文浏览量:  22
  • PDF下载量:  14
  • 被引次数: 19
出版历程
  • 刊出日期:  2017-11-09

目录

    TIAN Muqin

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回