采煤机滚动轴承故障诊断新方法

公茂法, 郭一萱, 闫鹏, 吴娜, 张超

公茂法,郭一萱,闫鹏,等.采煤机滚动轴承故障诊断新方法[J].工矿自动化,2017,43(5):50-53.. DOI: 10.13272/j.issn.1671-251x.2017.05.012
引用本文: 公茂法,郭一萱,闫鹏,等.采煤机滚动轴承故障诊断新方法[J].工矿自动化,2017,43(5):50-53.. DOI: 10.13272/j.issn.1671-251x.2017.05.012
GONG Maofa, GUO Yixuan, YAN Peng, WU Na, ZHANG Chao. A new fault diagnosis method of rolling bearing of shearer[J]. Journal of Mine Automation, 2017, 43(5): 50-53. DOI: 10.13272/j.issn.1671-251x.2017.05.012
Citation: GONG Maofa, GUO Yixuan, YAN Peng, WU Na, ZHANG Chao. A new fault diagnosis method of rolling bearing of shearer[J]. Journal of Mine Automation, 2017, 43(5): 50-53. DOI: 10.13272/j.issn.1671-251x.2017.05.012

采煤机滚动轴承故障诊断新方法

基金项目: 

山东省自然科学基金项目(ZR2012EEM021)

详细信息
  • 中图分类号: TD632

A new fault diagnosis method of rolling bearing of shearer

  • 摘要: 针对基于K-means聚类算法的采煤机滚动轴承故障诊断结果存在不稳定的问题,提出了一种基于TDKM-RBF神经网络的采煤机滚动轴承故障诊断新方法。该方法采用Tree Distribution算法确定K-means聚类算法的初始聚类中心,消除K-means聚类结果的波动性,采用K-means算法确定RBF神经网络的参数,再将训练好的神经网络用于故障诊断。仿真结果表明,该方法的聚类过程迅速,稳定性较高,提高了采煤机滚动轴承故障诊断的正确率。
    Abstract: In view of unstable problem existed in fault diagnosis result for rolling bearing of shearer based on K-means clustering algorithm, a new fault diagnosis method of rolling bearing of shearer based on TDKM-RBF neural network was proposed. The method adopts Tree Distribution algorithm to determine initial clustering center of the K-means clustering algorithm, so as to eliminate volatility of K-means clustering results. The method uses K-means algorithm to determine the parameters of the RBF neural network, then the trained neural network was used for fault diagnosis. The simulation results show that the method has quick clustering process,higher steability, and obviously improves accuracy of fault diagnosis for rolling bearing of shearer.
  • 期刊类型引用(4)

    1. 李富伟,孙玉澄,向艳芳,梁龙,何巍,刘碧芋. 矿井机电装备干扰源辨识及抑制技术研究. 矿业研究与开发. 2022(07): 172-179 . 百度学术
    2. 王晓霞. 瓦斯传感器的故障模式及其判断. 内蒙古石油化工. 2022(10): 59-62 . 百度学术
    3. 贾娜娜. 甲烷传感器的检定与校准研究. 内蒙古石油化工. 2022(12): 47-50 . 百度学术
    4. 胡德隆,刘桂秋,潘勇,孟德安. 电磁兼容浪涌(冲击)抗扰度试验新旧标准比对分析. 质量与市场. 2020(08): 16-18 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  33
  • HTML全文浏览量:  9
  • PDF下载量:  9
  • 被引次数: 4
出版历程
  • 刊出日期:  2017-05-09

目录

    /

    返回文章
    返回