液压支架疲劳寿命近似估算

王京涛, 陆金桂, 朱正权, 钱鹏, 林晓川, 王邦祥

王京涛,陆金桂,朱正权,等.液压支架疲劳寿命近似估算[J].工矿自动化,2017,43(3):39-42.. DOI: 10.13272/j.issn.1671-251x.2017.03.009
引用本文: 王京涛,陆金桂,朱正权,等.液压支架疲劳寿命近似估算[J].工矿自动化,2017,43(3):39-42.. DOI: 10.13272/j.issn.1671-251x.2017.03.009
WANG Jingtao, LU Jingui, ZHU Zhengquan, QIAN Peng, LIN Xiaochuan, WANG Bangxiang. Approximate estimation of fatigue life of hydraulic support[J]. Journal of Mine Automation, 2017, 43(3): 39-42. DOI: 10.13272/j.issn.1671-251x.2017.03.009
Citation: WANG Jingtao, LU Jingui, ZHU Zhengquan, QIAN Peng, LIN Xiaochuan, WANG Bangxiang. Approximate estimation of fatigue life of hydraulic support[J]. Journal of Mine Automation, 2017, 43(3): 39-42. DOI: 10.13272/j.issn.1671-251x.2017.03.009

液压支架疲劳寿命近似估算

基金项目: 

“十二五”国家科技支撑计划项目(2013BAF02B11)

详细信息
  • 中图分类号: TD355.4

Approximate estimation of fatigue life of hydraulic support

  • 摘要: 针对常规的液压支架寿命近似分析方法需对危险点进行循环加载和获取,导致计算机负载增加的问题,提出了一种基于遗传算法与BP神经网络的寿命估算模型。利用遗传算法的全局搜索性优化BP神经网络,使其不易陷入局部最小点;利用优化后的BP神经网络建立危险点结构参量到疲劳寿命的网络映射模型。针对样本容量和隐含层节点数进行了测试,测试结果表明,样本容量为40、隐含层节点数为7时,模型估算精度较高;液压支架平均寿命估算值为36 456次,与理论值的最大相对误差为5.27%。
    Abstract: In view of problem that conventional life approximate analytical method of hydraulic support needs cyclic loading and acquisition of dangerous points which leads to increase of computer load, a life estimation model based on genetic algorithm and BP neural network was proposed. The BP neural network is optimized by using global search performance of genetic algorithm to avoid falling into the local minimum points. The optimized BP neural network is used to establish network mapping model between structural parameters of the dangerous points and fatigue life. The test results of sample size and number of hidden layer nodes show that the estimation accuracy of the model is high when the sample size is 40 and the number of hidden layer nodes is 7; the average value of estimated life of hydraulic support is 36 456 times, and the maximum relative error with the theoretical value is 5.27%.
  • 期刊类型引用(6)

    1. 肖坤宇,徐彤,苏成明,张鹏,马飞. 液压支架关键部件失效分析与寿命评估研究进展. 中国表面工程. 2022(01): 97-106 . 百度学术
    2. 赵丽娟,张波,张雯. 基于改进PSO-BP的采煤机截割部行星架疲劳寿命分析及预测. 机械强度. 2021(04): 977-981 . 百度学术
    3. 郭一帆,唐家银. 基于机器学习算法的寿命预测与故障诊断技术的发展综述. 计算机测量与控制. 2019(03): 7-13 . 百度学术
    4. 李世科. 基于LM-BP神经网络的液压支架顶梁疲劳寿命预测及应用. 中国矿业. 2019(05): 92-96 . 百度学术
    5. 王雷,陆金桂,陈涌. 液压支架顶梁可靠度近似计算方法. 工矿自动化. 2018(07): 88-91 . 本站查看
    6. 赵东波,陆金桂,姚灵灵,王京涛. 在役液压支架部件剩余寿命估算. 工矿自动化. 2017(10): 89-93 . 本站查看

    其他类型引用(9)

计量
  • 文章访问数:  89
  • HTML全文浏览量:  16
  • PDF下载量:  12
  • 被引次数: 15
出版历程
  • 刊出日期:  2017-03-09

目录

    /

    返回文章
    返回