电动机故障诊断技术探讨

王惠中, 効迎春, 张荧, 朱宏毅

王惠中,効迎春,张荧,等.电动机故障诊断技术探讨[J].工矿自动化,2015, 41(1):40-44.. DOI: 10.13272/j.issn.1671-251x.2015.01.011
引用本文: 王惠中,効迎春,张荧,等.电动机故障诊断技术探讨[J].工矿自动化,2015, 41(1):40-44.. DOI: 10.13272/j.issn.1671-251x.2015.01.011
WANG Huizhong, XIAO Yingchun, ZHANG Ying, ZHU Hongyi. Study on fault diagnosis technologies of motor[J]. Journal of Mine Automation, 2015, 41(1): 40-44. DOI: 10.13272/j.issn.1671-251x.2015.01.011
Citation: WANG Huizhong, XIAO Yingchun, ZHANG Ying, ZHU Hongyi. Study on fault diagnosis technologies of motor[J]. Journal of Mine Automation, 2015, 41(1): 40-44. DOI: 10.13272/j.issn.1671-251x.2015.01.011

电动机故障诊断技术探讨

基金项目: 

国家自然科学基金资助项目(50967001)

详细信息
  • 中图分类号: TD614

Study on fault diagnosis technologies of motor

  • 摘要: 介绍了电动机常见电气故障和机械故障的类型及产生原因,详细阐述了短时傅里叶变换、小波变换、小波包变换、经验模态分解等基于信号处理的诊断方法,以及基于专家系统、模糊理论、支持向量机、神经网络等的智能诊断方法在电动机故障诊断中的应用,指出多种诊断方法相结合以及信息融合方法是电动机故障诊断技术的发展趋势。
    Abstract: The paper introduced types and causes of common electrical and mechanical faults of motor, and described application of signal processing methods and intelligent diagnosis methods in fault diagnosis of motor. The signal processing methods include short-time Fourier transform, wavelet transform, wavelet packet transform and empirical mode decomposition. The intelligent diagnosis methods include expert system, fuzzy theory, support vector machine and neural network. It also pointed out development trend of fault diagnosis technologies of motor is combination of multiple diagnosis methods and information fusion method.
计量
  • 文章访问数:  64
  • HTML全文浏览量:  11
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 刊出日期:  2015-01-09

目录

    /

    返回文章
    返回