煤矿工业视频监控系统通用技术条件标准研究制定

常琳, 李宗伟

常琳,李宗伟. 煤矿工业视频监控系统通用技术条件标准研究制定[J]. 工矿自动化,2025,51(5):155-162. DOI: 10.13272/j.issn.1671-251x.18245
引用本文: 常琳,李宗伟. 煤矿工业视频监控系统通用技术条件标准研究制定[J]. 工矿自动化,2025,51(5):155-162. DOI: 10.13272/j.issn.1671-251x.18245
CHANG Lin, LI Zongwei. Research and development of general technical specifications for video surveillance systems in the coal mining industry[J]. Journal of Mine Automation,2025,51(5):155-162. DOI: 10.13272/j.issn.1671-251x.18245
Citation: CHANG Lin, LI Zongwei. Research and development of general technical specifications for video surveillance systems in the coal mining industry[J]. Journal of Mine Automation,2025,51(5):155-162. DOI: 10.13272/j.issn.1671-251x.18245

煤矿工业视频监控系统通用技术条件标准研究制定

基金项目: 

国家矿山安全监察局矿山安全生产科研攻关项目(矿安〔2023〕19号);中国煤炭科工集团有限公司科技创新创业资金专项项目(2022-2-QN006)。

详细信息
    作者简介:

    常琳(1982—),男,安徽安庆人,研究员,硕士,从事矿用设备安全准入及信息与智能化研究工作,E-mail: 13230420@qq.com

    通讯作者:

    李宗伟(1987—),男,河北迁安人,副研究员,硕士,从事矿山目标定位、安全监控等技术研究与安全管理工作,E-mail: 715333101@qq.com

  • 中图分类号: TD655

Research and development of general technical specifications for video surveillance systems in the coal mining industry

  • 摘要:

    为提升煤矿工业视频监控系统在现代化矿井复杂应用场景下的环境适应性、智能分析可靠性,除图像监视功能外,系统应增加:① 视频图像质量自诊断机制,对视频图像质量和云台镜头远程控制的有效性进行自动检测和诊断。② 多层级智能视频分析(IVA)体系,包括目标检测、目标识别、行为识别、事件检测等。③ 可配置IVA框架,支持根据需求选择和配置IVA功能。④ 结构化视频描述与索引,支持对IVA结果进行自动描述,以及基于IVA结果等信息建立索引。⑤ 跨系统报警联动,具备报警联动数据交互接口,发送IVA结果等信息至其他设备或系统。系统主要IVA功能应通过最大误差、误报率、漏报率、IVA延迟等指标进行量化,其中最大误报率不高于5%,漏报率不高于10%,IVA延迟不大于2 s。设计多场景模拟试验综合验证系统性能,主要包括:① 采用视频质量干扰模拟与主观评价机制验证视频图像质量自诊断功能和系统图像质量。② 构建测试视频导入、测试视频翻拍、场景模拟三重测试体系评估IVA功能。③ 采用总带宽占用量计算或最大数量视频信号接入测试方式验证系统最大容量。

    Abstract:

    To enhance the environmental adaptability and reliability of intelligent analysis of video surveillance systems in the coal mining industry under complex modern mine scenarios, in addition to image monitoring functions, the system should include: ① a video image quality self-diagnosis mechanism that automatically detects and diagnoses the quality of video images and the effectiveness of remote control of the PTZ lens. ② a multi-level Intelligent Video Analysis (IVA) system, including target detection, target recognition, behavior recognition, and event detection. ③ a configurable IVA framework that supports selecting and configuring IVA functions according to needs. ④ structured video description and indexing, supporting automatic description of IVA results and the establishment of indexes based on IVA results and related information. ⑤ cross-system alarm linkage, equipped with data interaction interfaces for alarm linkage, sending IVA results and other information to other devices or systems. The main IVA functions of the system should be quantitatively evaluated by indicators such as maximum error, false alarm rate, missed detection rate, and IVA latency, with the maximum false alarm rate not exceeding 5%, missed detection rate not exceeding 10%, and IVA latency not exceeding 2 seconds. Design multi-scenario simulation tests to comprehensively verify system performance, mainly including: ① verification of video image quality self-diagnosis function and system image quality through video quality interference simulation and subjective evaluation mechanisms. ② evaluation of IVA functions by establishing a triple test system including test video import, test video re-shooting, and scenario simulation. ③ verification of system maximum capacity by total bandwidth occupancy calculation or maximum number of video signal access tests.

  • 图  1   单一场景系统拓扑方式

    Figure  1.   Topology of a single scene system

    图  2   多场景系统拓扑方式

    Figure  2.   Topology of multiple scene systems

    图  3   系统作为其他主系统或装置子系统时的拓扑方式

    Figure  3.   Topology of a system functioning as a subsystem within a main system or device

    表  1   目标检测功能主要技术指标

    Table  1   Key technical indicators of object detection function

    功能 技术指标
    掘进工作面、采煤工作面、主运
    输系统巷道和煤仓内人员计数
    最大误差≤±1人(当画面中同时出现人
    数不超过15人时),Tlatency≤1 s
    钻杆动态计数 最大误差≤±1根(钻杆数量少于50根时)
    或≤±2根(钻杆数量超过50根时),
    Tlatency≤1 s
    刮板输送机大块煤检测 FNR≤2%,FPR≤10%,Tlatency≤1 s
    胶带目标状态检测 FNR≤2%,FPR≤10%,Tlatency≤1 s
    辅助运输车辆速度检测 最大误差≤±10%,Tlatency≤0.5 s
    经过路口辅助运输车辆计数 最大误差≤±1辆(每经过100辆),Tlatency≤1 s
    井底积煤检测 最大误差≤5 cm,覆盖井底的积煤区域≥95%,FNR≤2%,FPR≤10%,Tlatency≤1 s
    箕斗煤残留检测 最大误差≤5 cm,覆盖箕斗区域≥95%,FNR≤2%,FPR≤10%,Tlatency≤1 s
    选煤厂胶带撒料检测 FNR≤2%,FPR≤10%,Tlatency≤1 s
    选煤厂刮板输送机断链检测 FNR≤2%,FPR≤10%,Tlatency≤0.5 s
    下载: 导出CSV

    表  2   目标识别功能主要技术指标

    Table  2   Key technical indicators of target recognition function

    功能 技术指标
    关键工序识别 FNR≤5%,FPR≤10%,Tlatency≤1 s
    设备运行状态识别 FNR≤3%,FPR≤10%,Tlatency≤2 s
    信号灯、人员状态、车辆状态、
    人车相对状态识别
    FNR≤2%,FPR≤5%,Tlatency≤0.5 s
    防跑车装置状态识别 FNR≤1%,FPR≤5%,Tlatency≤1 s
    钢丝绳外观缺陷检测 FNR≤2%,FPR≤8%,Tlatency≤2 s
    井筒渗水、螺栓脱落、
    电缆卡子脱落检测
    FNR≤2%,FPR≤8%,Tlatency≤2 s
    风门状态识别 FNR≤2%,FPR≤5%,Tlatency≤2 s
    下载: 导出CSV

    表  3   行为识别功能主要技术指标

    Table  3   Key technical indicators of behavior recognition function

    功能 技术指标
    人员闯入警戒区域监测 FNR≤2%,FPR≤5%,Tlatency≤1 s
    人员吸烟检测 FNR≤5%,FPR≤10%,Tlatency≤1 s
    人员班中脱岗、睡岗检测 FNR≤3%,FPR≤8%,Tlatency≤5 s
    人员未佩戴安全帽检测 FNR≤2%,FPR≤5%,Tlatency≤1 s
    人员未佩戴口罩检测 FNR≤4%,FPR≤8%,Tlatency≤2 s
    人员乘坐架空乘人装置时携带大件物品检测 FNR≤2%,FPR≤6%,Tlatency≤2 s
    人员在轨道上逗留徘徊、多人并行检测 FNR≤3%,FPR≤8%,Tlatency≤2 s
    人员未佩戴自救器、矿灯及跨越胶带、乘坐胶
    带检测,登高作业人员未佩戴安全绳检测
    FNR≤2%,FPR≤5%,Tlatency≤1 s
    人员违规作业识别 FNR≤3%,FPR≤8%,Tlatency≤2 s
    电工穿戴不合规识别 FNR≤2%,FPR≤5%,Tlatency≤1 s
    下载: 导出CSV

    表  4   事件检测功能主要技术指标

    Table  4   Key technical metrics for event detection

    功能 技术指标
    工作面或选煤厂刮板输送机故障检测 FNR≤2%,FPR≤5%,Tlatency≤1 s
    提升机尾绳异常检测 FNR≤2%,FPR≤6%,Tlatency≤1 s
    辅助运输车辆顶撞风门检测 FNR≤2%,FPR≤5%,Tlatency≤1 s
    下载: 导出CSV

    表  5   主观评价指标评分

    Table  5   Subjective evaluation indicators rating scale

    得分 5 4 3 2 1
    目标
    辨识度
    目标清晰,
    完全可辨识
    目标清晰,
    可辨识
    目标部分清晰,
    但仍可辨识
    目标
    不清晰
    目标
    不可辨识
    下载: 导出CSV
  • [1] 孙继平. 煤矿信息化与智能化要求与关键技术[J]. 煤炭科学技术,2014,42(9):22-25,71.

    SUN Jiping. Requirement and key technology on mine informationalization and intelligent technology[J]. Coal Science and Technology,2014,42(9):22-25,71.

    [2] 付翔,秦一凡,李浩杰,等. 新一代智能煤矿人工智能赋能技术研究综述[J]. 工矿自动化,2023,49(9):122-131,139.

    FU Xiang,QIN Yifan,LI Haojie,et al. Summary of research on artificial intelligence empowerment technology for new generation intelligent coal mine[J]. Journal of Mine Automation,2023,49(9):122-131,139.

    [3] 许志,李敬兆,张传江,等. 轻量化CNN及其在煤矿智能视频监控中的应用[J]. 工矿自动化,2020,46(12):13-19.

    XU Zhi,LI Jingzhao,ZHANG Chuanjiang,et al. Lightweight CNN and its application in coal mine intelligent video surveillance[J]. Industry and Mine Automation,2020,46(12):13-19.

    [4] 党王聪,董博,乔佳妮,等. 基于千眼视频智能分析的综合安全管理系统[J]. 煤矿安全,2024,55(12):236-242.

    DANG Wangcong,DONG Bo,QIAO Jiani,et al. Integrated safety management system based on intelligent analysis of thousand eyes video[J]. Safety in Coal Mines,2024,55(12):236-242.

    [5] 毛清华,翟姣,胡鑫,等. 煤矿综采工作面人员入侵危险区域智能识别方法[J]. 煤炭学报,2025,50(2):1347-1361.

    MAO Qinghua,ZHAI Jiao,HU Xin,et al. Intelligent recognition method for personnel intrusion hazardous area in fully mechanized mining face[J]. Journal of China Coal Society,2025,50(2):1347-1361.

    [6] 程德强,钱建生,郭星歌,等. 煤矿安全生产视频AI识别关键技术研究综述[J]. 煤炭科学技术,2023,51(2):349-365.

    CHENG Deqiang,QIAN Jiansheng,GUO Xingge,et al. Review on key technologies of AI recognition for videos in coal mine[J]. Coal Science and Technology,2023,51(2):349-365.

    [7] 程健,李昊,马昆,等. 矿井视觉计算体系架构与关键技术[J]. 煤炭科学技术,2023,51(9):202-218. DOI: 10.12438/cst.2023-0152

    CHENG Jian,LI Hao,MA Kun,et al. Architecture and key technologies of coalmine underground vision computing[J]. Coal Science and Technology,2023,51(9):202-218. DOI: 10.12438/cst.2023-0152

    [8] AQ 6201—2019 煤矿安全监控系统通用技术要求[S].

    AQ 6201-2019 General technical requirements of coal mine safety supervision[S].

    [9] AQ 6210—2007 煤矿井下作业人员管理系统通用技术条件[S].

    AQ 6210-2007 General technical conditions of the system for the management of the underground personnel in a coal mine[S].

    [10] MT/T 1112—2011 煤矿图像监视系统通用技术条件[S].

    MT/T 1112-2011 General specifications of the video surveillance system in the coal mine[S].

    [11] 郝洋,周骅,王代强. 基于国密SM2的H. 264视频加密方案设计[J/OL]. 电子测量技术:1-8[2025-05-25]. http://kns.cnki.net/kcms/detail/11.2175.TN.20250509.1759.080.html.

    HAO Yang,ZHOU Hua,WANG Daiqiang. Design of H. 264 video encryption scheme based on national security SM2 algorithm[J/OL]. Electronic Measurement Technology:1-8[2025-05-25]. https://kns.cnki.net/kcms/detail/11.2175.TN.20250509.1759.080.html.

    [12] 马振华,贾华宇,罗飚. 基于H. 265/HEVC的快速帧内编码研究[J]. 现代电子技术,2025,48(8):51-55.

    MA Zhenhua,JIA Huayu,LUO Biao. Research on fast intraframe coding based on H. 265/HEVC[J]. Modern Electronics Technique,2025,48(8):51-55.

    [13] 包宋建,孟杨,许艳英,等. 基于XC2S600E的MJPEG编码器研究与实现[J]. 重庆文理学院学报(自然科学版),2011,30(4):42-45.

    BAO Songjian,MENG Yang,XU Yanying,et al. The research and implementation of the MJPEG encoder based on XC2S600E[J]. Journal of Chongqing University of Arts and Sciences(Natural Science Edition),2011,30(4):42-45.

    [14] GB/T 25724—2010 安全防范监控数字视音频编解码技术要求[S].

    GB/T 25724-2010 Technical specification of surveillance video and audio coding[S].

    [15] GB 35114—2017 公共安全视频监控联网信息安全技术要求[S].

    GB 35114-2017 Technical requirements for information security of video surveillance network system for public security[S].

    [16] GB/T 28181—2022 公共安全视频监控联网系统信息传输、交换、控制技术要求[S].

    GB/T 28181-2022 Technical requirements for information transmission,switch and control in video surveillance networking system for public security[S].

    [17] 李文峰,高原. 基于ONVIF的本安型手持式信息记录仪[J]. 煤矿安全,2019,50(1):92-95.

    LI Wengfeng,GAO Yuan. Intrinsically safe handheld information recorder based on ONVIF[J]. Safety in Coal Mines,2019,50(1):92-95.

    [18] GB/T 17626.2—2018 电磁兼容 试验和测量技术 静电放电抗扰度试验[S].

    GB/T 17626.2-2018 Electromagnetic compatibility-Testing and measurement techniques-Electrostatic discharge immunity test[S].

    [19] GB/T 17626.3—2023 电磁兼容 试验和测量技术 第3部分:射频电磁场辐射抗扰度试验[S].

    GB/T 17626.3-2023 Electromagnetic compatibility-Testing and measurement techniques-Part 3:Radiated,radio-frequency,electromagnetic field immunity test[S].

    [20] GB/T 17626.4—2018 电磁兼容 试验和测量技术 电快速瞬变脉冲群抗扰度试验[S].

    GB/T 17626.4-2018 Electromagnetic compatibility-Testing and measurement techniques-Electrical fast transient/bursti- mmunity test[S].

    [21] GB/T 17626.5—2019 电磁兼容 试验和测量技术 浪涌(冲击)抗扰度试验[S].

    GB/T 17626.5-2019 Electromagnetic compatibility-Testing and measurement techniques-Surge immunity test[S].

    [22] GB/T 16697—2017 单传感器应用电视摄像机通用技术要求及测量方法[S].

    GB/T 16697-2017 General technical requirement and measurement method for non-broadcast camera of single sensor[S].

  • 期刊类型引用(12)

    1. 陈仪,刘春元. 基于聚类集合的EMD-CNN-BiLSTM自注意力机制短期电力负荷预测. 软件工程. 2025(03): 1-5+46 . 百度学术
    2. 李剑. 基于GRA-SSA-GRU模型的煤层瓦斯含量预测. 能源与环保. 2025(02): 36-41 . 百度学术
    3. 盛武,樊斌斌. EMD-GRU组合模型在煤矿瓦斯体积分数预测中的应用. 安全与环境学报. 2025(04): 1339-1348 . 百度学术
    4. 肖国亮,杨博,牛勇. 基于Stacking集成模型的顺层钻孔预抽煤层瓦斯涌出量预测. 煤矿现代化. 2025(04): 153-156 . 百度学术
    5. 高冶,李标. 煤矿瓦斯抽放监控系统设计研究. 煤矿机械. 2025(06): 29-33 . 百度学术
    6. 武强,王潇,赵颖旺,张小燕,贾明珲. 基于煤层底板标高控制区水量均衡的矿井突涌水蔓延模拟与应用. 中国矿业大学学报. 2025(03): 545-560 . 百度学术
    7. 祁浩浩,茅大钧,陈思勤. 基于改进自适应增强算法的混煤发热量预测方法. 电力科学与工程. 2024(06): 69-78 . 百度学术
    8. 曹潇颖. 基于随机森林回归算法的油井能耗分析和预测. 化学工程与装备. 2024(07): 125-129 . 百度学术
    9. 王薇. 基于随机森林回归算法的抽油机井系统效率分析与预测. 石油石化节能与计量. 2024(08): 1-5 . 百度学术
    10. 宋世伟,张雪,张喜超,景媛媛. 基于深度神经网络的回采工作面瓦斯涌出量预测. 现代工业经济和信息化. 2024(09): 115-116+119 . 百度学术
    11. 虞任豪,战韬阳,项薇,林文文,邓晓强. 基于贝叶斯优化机器学习的多尺度注塑质量预测. 机械制造. 2024(11): 101-106+59 . 百度学术
    12. 马文伟. 基于特征选择与BO-GBDT的工作面瓦斯涌出量预测方法. 工矿自动化. 2024(12): 136-144 . 本站查看

    其他类型引用(3)

图(3)  /  表(5)
计量
  • 文章访问数:  39
  • HTML全文浏览量:  6
  • PDF下载量:  7
  • 被引次数: 15
出版历程
  • 收稿日期:  2025-04-28
  • 修回日期:  2025-05-27
  • 网络出版日期:  2025-06-03
  • 刊出日期:  2025-05-14

目录

    /

    返回文章
    返回