矿井智能通风研究进展及展望

刘湘滢

刘湘滢. 矿井智能通风研究进展及展望[J]. 工矿自动化,2025,51(4):44-56. DOI: 10.13272/j.issn.1671-251x.18241
引用本文: 刘湘滢. 矿井智能通风研究进展及展望[J]. 工矿自动化,2025,51(4):44-56. DOI: 10.13272/j.issn.1671-251x.18241
LIU Xiangying. Research progress and prospects of intelligent mine ventilation[J]. Journal of Mine Automation,2025,51(4):44-56. DOI: 10.13272/j.issn.1671-251x.18241
Citation: LIU Xiangying. Research progress and prospects of intelligent mine ventilation[J]. Journal of Mine Automation,2025,51(4):44-56. DOI: 10.13272/j.issn.1671-251x.18241

矿井智能通风研究进展及展望

详细信息
    作者简介:

    刘湘滢(2000—),女,广东深圳人,硕士研究生,研究方向为安全技术与管理,E-mail:candiceliu73@gmail.com

  • 中图分类号: TD724

Research progress and prospects of intelligent mine ventilation

  • 摘要:

    从通风参数监测技术、通风网络实时解算方法、通风灾变应急调控技术和矿井智能通风系统架构4个方面,分析了通风参数检测设备、测定方案优化、网络实时监测与解算、异常诊断方法及应急调控技术等方面的研究进展。指出当前智能通风系统面临三大关键挑战:现有通风参数检测装置在稳定性和准确率方面存在不足,导致系统难以实现秒级响应与精准调控;矿井环境的高度不确定性与人机协同决策自动化水平低,制约着通风网络的自适应优化能力;火与瓦斯复合灾害的实时辨识技术尚未突破,限制了灾害工况下的应急通风调控效能。针对上述问题,提出未来重点攻关方向:① 通过研发抗干扰性能强的新型传感设备,构建“固定监测+移动巡检”融合的时空动态监测网络,实现通风多参数的精准感知。② 基于数字孪生技术建立通风网络超实时仿真模型,结合强化学习与博弈论方法优化局部决策与全局策略的协同机制,推动智能决策体系向云边端协同模式发展。③ 构建数字孪生驱动的灾情演化推演平台,集成动态逃生路径规划与机器人集群快速布防技术,形成“灾情预警−区域隔离−智能救援”三级应急响应体系。

    Abstract:

    The research progress has been analyzed from four aspects: ventilation parameter monitoring technology, real-time calculation methods for ventilation networks, emergency regulation technology for ventilation disasters, and the architecture of intelligent mine ventilation systems, focusing on ventilation parameter detection devices, optimization of measurement schemes, real-time monitoring and calculation of networks, anomaly diagnosis methods, and emergency regulation technologies. Currently, intelligent ventilation systems face three major challenges. First, existing ventilation parameter detection devices are insufficient in stability and accuracy, making it difficult for the system to achieve response within seconds and precise regulation. Second, the high uncertainty of the mine environment and the low level of automation in human-machine collaborative decision-making limit the adaptive optimization capabilities of the ventilation network. Third, real-time identification technologies of fire and gas compound disasters have not yet been broken through, restricting the effectiveness of emergency ventilation regulation in disaster conditions. To address these challenges, the future research directions should focus on: ① Developing new sensor devices with strong anti-interference capabilities to construct a spatiotemporal dynamic monitoring network that integrates "fixed-point monitoring+mobile inspection", enabling precise multi-parameter ventilation perception. ② Establishing an ultra-real-time simulation model for the ventilation network based on digital twin technology, and combining reinforcement learning and game theory methods to optimize the coordination between local decision-making and global strategy, thereby driving intelligent decision-making systems toward a cloud-edge-device collaborative mode. ③ Building a digital twin-driven disaster evolution simulation platform, integrating dynamic evacuation path planning and rapid deployment of robot clusters, thereby forming a three-tier emergency response system of "disaster warning-regional isolation-intelligent rescue".

  • 图  1   数字孪生风流调控系统

    Figure  1.   Digital twin wind flow regulation system

    图  2   矿井通风系统异常预警指标体系

    Figure  2.   Anomaly regulation framework for intelligent mine ventilation

    图  3   矿井智能通风系统架构

    Figure  3.   System architecture of intelligent mine ventilation

    表  1   光学类瓦斯传感器技术

    Table  1   Optical gas sensor technologies

    传感器类型 检测限度/% 响应时间/s 适用场景
    TDLAS 0.001~0.01 1~2 高精度定点/分布式监测
    FTIR 0.1~1 5~10 便携设备/常规区域监测
    光声光谱 0.000 1 <10 痕量气体实验室分析
    光纤光栅 0.1~1 30~60 长期稳定分布式监测
    下载: 导出CSV

    表  2   电化学式瓦斯传感器技术对比

    Table  2   Comparison of electrochemical gas sensor technologies

    传感器类型 检测原理 适用场景
    恒电位电解式 甲烷在电极表面被氧化,
    产生的电流与浓度成正比
    便携式甲烷检测仪
    极限电流式 甲烷通过多孔膜扩散到电
    极表面,产生的电流与浓
    度呈线性关系
    汽车尾气监测等工业
    高温环境
    固体电解质式[13-14] 甲烷与氧气反应生成CO2
    和H2O,引起电解质电势
    或电流变化
    工业在线监测、
    高温高湿
    下载: 导出CSV
  • [1] 张国枢. 通风安全学[M]. 2版,徐州:中国矿业大学出版社,2000.

    ZHANG Guoshu. Ventilation safety[M]. 2nd ed. Xuzhou:China University of Mining & Technology Press,2000.

    [2] 邓军,李鑫,王凯,等. 矿井火灾智能监测预警技术近20年研究进展及展望[J]. 煤炭科学技术,2024,52(1):154-177. DOI: 10.12438/cst.2023-2016

    DENG Jun,LI Xin,WANG Kai,et al. Research progress and prospect of mine fire intelligent monitoring and early warning technology in recent 20 years[J]. Coal Science and Technology,2024,52(1):154-177. DOI: 10.12438/cst.2023-2016

    [3] 周福宝,辛海会,魏连江,等. 矿井智能通风理论与技术研究进展[J]. 煤炭科学技术,2023,51(1):313-328.

    ZHOU Fubao,XIN Haihui,WEI Lianjiang,et al. Research progress of mine intelligent ventilation theory and technology[J]. Coal Science and Technology,2023,51(1):313-328.

    [4]

    LI Yafei,MA Yanming,ZHENG Chuantao,et al. Near-infrared wide-range dual-gas sensor system for simultaneous detection of methane and carbon monoxide in coal mine environment[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2024,307. DOI: 10.1016/j.saa.2023.123581.

    [5]

    LIANG Yuntao,WANG Jincheng,TIAN Fuchao,et al. A novel temperature compensation approach of IR gas sensors in coal mines[J]. Fuel,2023,354. DOI: 10.1016/j.fuel.2023.129330.

    [6] 丛琳. 煤矿井下钻孔内瓦斯浓度监测传感器研制[J]. 煤田地质与勘探,2022,50(2):150-155. DOI: 10.12363/issn.1001-1986.21.05.0277

    CONG Lin. Development of a methane concentration monitoring sensor in underground boreholes of coal mines[J]. Coal Geology & Exploration,2022,50(2):150-155. DOI: 10.12363/issn.1001-1986.21.05.0277

    [7] 张雷,尹王保,董磊,等. 基于红外光谱吸收原理的红外瓦斯传感器的实验[J]. 煤炭学报,2006(4):480-483. DOI: 10.3321/j.issn:0253-9993.2006.04.016

    ZHANG Lei,YIN Wangbao,DONG Lei,et al. Experimental of an infrared gas sensor based on infrared absorption spectrum theory in laboratory[J]. Journal of China Coal Society,2006(4):480-483. DOI: 10.3321/j.issn:0253-9993.2006.04.016

    [8] 戴婳,周孟然,王波,等. 非本征F−P传感器在瓦斯检测系统中的应用[J]. 工矿自动化,2014,40(8):91-94.

    DAI Hua,ZHOU Mengran,WANG Bo,et al. Application of extrinsic F-P sensor in gas detection system[J]. Industry and Mine Automation,2014,40(8):91-94.

    [9] 李岩,郭寿松. 两种瓦斯检测仪器在庞庞塔煤矿上隅角测定数值不一致的原因分析[J]. 矿业安全与环保,2014,41(1):57-59,62. DOI: 10.3969/j.issn.1008-4495.2014.01.018

    LI Yan,GUO Shousong. Cause analysis on inconsistent measuring data with two gas detectors at upper corner angle in Pangpangta Coal Mine[J]. Mining Safety & Environmental Protection,2014,41(1):57-59,62. DOI: 10.3969/j.issn.1008-4495.2014.01.018

    [10] 付华,司南楠,鲁俊杰. 基于恒温谐波检测双回路瓦斯浓度仪研究[J]. 传感技术学报,2016,29(10):1493-1499. DOI: 10.3969/j.issn.1004-1699.2016.10.005

    FU Hua,SI Nannan,LU Junjie. Study on dual-circuits gas detector based on constant temperature and harmonic detection[J]. Chinese Journal of Sensors and Actuators,2016,29(10):1493-1499. DOI: 10.3969/j.issn.1004-1699.2016.10.005

    [11] 郭清华. 煤矿动力灾害前兆信息传感技术发展与应用[J]. 煤炭科学技术,2022,50(11):76-83.

    GUO Qinghua. Development and application of precursory information sensing technology in coal mine dynamic disaster[J]. Coal Science and Technology,2022,50(11):76-83.

    [12]

    CHENG Li,SUN Ming,WANG Shuyan. Analysis on dynamic characteristics of corona discharge in low concentration methane-air mixture at micro-nano scale[C]. The 8th International Conference on Smart Grid and Smart Cities,Shanghai,2024. DOI: 10.1109/ICSGSC62639.2024.10813932.

    [13]

    WANG Luyu,SONG Jia,RUAN Chenghai,et al. MoS2 based dual mine gas disaster sensor that operates at room temperature[J]. Sensors and Actuators A:Physical,2023,359. DOI: 10.1016/j.sna.2023.114517.

    [14]

    ZHU Wenyuan,WANG Pengtao,XIE Kun,et al. First-principles study of the adsorption and sensing properties of transition metal-modified CrSe2 for CH4,H2S,and CO[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2025,708. DOI: 10.1016/j.colsurfa.2024.136006.

    [15] 崔媛媛. UV光激发下贵金属对ZnO基瓦斯传感器的增敏效应研究[D]. 焦作:河南理工大学,2022.

    CUI Yuanyuan. Study on sensitization effect of precious metals on ZnO-based gas sensor under UV light excitation[D]. Jiaozuo:Henan Polytechnic University,2022.

    [16] 付华,杨義葵,刘宇佳. 双差分法检测瓦斯含量新技术的实验研究[J]. 煤炭学报,2012,37(7):1161-1164.

    FU Hua,YANG Yikui,LIU Yujia. Experiment study on new technology of methane content measurement by dual difference[J]. Journal of China Coal Society,2012,37(7):1161-1164.

    [17] 刘光迪. 煤矿隐蔽致灾地质因素高精度地电化学探测装置及综合解释技术研究[D]. 长沙:中南大学,2022.

    LIU Guangdi. Study on high-precision electrochemical detection device and comprehensive interpretation technology of hidden geological factors causing disasters in coal mines[D]. Changsha:Central South University,2022.

    [18] 丁汀,颜登程,张以文,等. 融合煤矿多维时序数据的瓦斯异常检测算法[J]. 计算机集成制造系统,2020,26(6):1651-1659.

    DING Ting,YAN Dengcheng,ZHANG Yiwen,et al. Gas anomaly detection algorithm merged with coal multi-dimensional time series data[J]. Computer Integrated Manufacturing Systems,2020,26(6):1651-1659.

    [19] 刘正杰. MEMS甲烷传感器特性表征系统的设计与实现[D]. 徐州:中国矿业大学,2020.

    LIU Zhengjie. Design and implementation of MEMS methane sensor characteristic characterization system[D]. Xuzhou:China University of Mining and Technology,2020.

    [20] 李东升. 低风高精度热式风速传感器设计[D]. 南京:南京信息工程大学,2019.

    LI Dongsheng. Design of low wind and high precision thermal wind speed sensor[D]. Nanjing:Nanjing University of Information Science & Technology,2019.

    [21] 王尚. 温度平衡模式MEMS热式风速风向传感器的研究[D]. 南京:东南大学,2020.

    WANG Shang. Research on MEMS thermal wind speed and direction sensor with temperature balance mode[D]. Nanjing:Southeast University,2020.

    [22] 王纪强,李振,孟辉,等. 矿用光纤热线式风速传感器设计[J]. 工矿自动化,2021,47(5):30-34.

    WANG Jiqiang,LI Zhen,MENG Hui,et al. Design of mine-used hot-wire-based optical fiber wind speed sensor[J]. Industry and Mine Automation,2021,47(5):30-34.

    [23] 宋涛,王建文,吴奉亮,等. 基于超声波全断面测风的矿井风网实时解算方法[J]. 工矿自动化,2022,48(4):114-120, 141.

    SONG Tao,WANG Jianwen,WU Fengliang,et al. Real-time calculation method of mine ventilation network based on ultrasonic full-section wind measurement[J]. Journal of Mine Automation,2022,48(4):114-120,141.

    [24] 张永昌. 矿井通风参数监测智能优化与通风网络响应智能诊断[D]. 徐州:中国矿业大学,2023.

    ZHANG Yongchang. Intelligent optimization of mine ventilation parameter monitoring and intelligent diagnosis of ventilation network response[D]. Xuzhou:China University of Mining and Technology,2023.

    [25] 丁果. 基于空气耦合超声传感器的气体流量计研究与设计[D]. 成都:电子科技大学,2017.

    DING Guo. Research and design of gas flowmeter based on air coupled ultrasonic sensor[D]. Chengdu:University of Electronic Science and Technology of China,2017.

    [26] 李新波,朱阁彦,李厚禹,等. 三维超声阵列风速风向测量方法[J]. 西安交通大学学报,2019,53(9):70-78.

    LI Xinbo,ZHU Geyan,LI Houyu,et al. A method for measuring wind velocity and direction with three-dimensional ultrasound array[J]. Journal of Xi'an Jiaotong University,2019,53(9):70-78.

    [27] 刘小松,解晓冉,单泽彪,等. 基于互射式三阵元超声波传感器的风矢量测量[J]. 太阳能学报,2023,44(9):411-417.

    LIU Xiaosong,XIE Xiaoran,SHAN Zebiao,et al. Wind vector measurement based on three mutually transmitting ultrasonic sensors[J]. Acta Energiae Solaris Sinica,2023,44(9):411-417.

    [28] 尹莘新. 基于时差法的声发射源定位方法研究[D]. 长春:吉林大学,2020.

    YIN Shenxin. Research on acoustic emission source location method based on time difference method[D]. Changchun:Jilin University,2020.

    [29] 单泽彪,解晓冉,刘小松,等. 互射式三阵元超声波传感器的二次相关测风方法[J]. 电子学报,2023,51(9):2428-2436. DOI: 10.12263/DZXB.20211659

    SHAN Zebiao,XIE Xiaoran,LIU Xiaosong,et al. Wind measurement with three mutually transmitting ultrasonic sensors based on quadratic correlation method[J]. Acta Electronica Sinica,2023,51(9):2428-2436. DOI: 10.12263/DZXB.20211659

    [30] 张浪. 巷道测风站风速传感器平均风速测定位置优化研究[J]. 煤炭科学技术,2018,46(3):96-102.

    ZHANG Lang. Optimized study on location to measure average air velocity with air velocity sensor in wind measuring station of underground mine[J]. Coal Science and Technology,2018,46(3):96-102.

    [31] 宋莹,李雪冰,王施惠,等. 基于LDA的矩形巷道测风站风速测定与校正实验研究[J]. 中国安全生产科学技术,2016,12(1):169-175.

    SONG Ying,LI Xuebing,WANG Shihui,et al. Experimental study on determination and correction method of wind speed in wind station of rectangular roadway based on LDA[J]. Journal of Safety Science and Technology,2016,12(1):169-175.

    [32]

    LI Rongmao,KIKUMOTO H,JIA Hongyuan,et al. Transfer learning strategy for data-driven correction of wind measurement around buildings using cup anemometers[J]. Building and Environment,20,241. DOI: 10.1016/j.buildenv.2023.110499.

    [33] 李雪冰,刘剑,秦洪岩,等. 湍流脉动影响下巷道平均风速单点统计测量方法[J]. 华北科技学院学报,2018,15(2):1-9. DOI: 10.3969/j.issn.1672-7169.2018.02.001

    LI Xuebing,LIU Jian,QIN Hongyan,et al. Method for air velocity measurement with single-point under the influence of turbulent fluctuation[J]. Journal of North China Institute of Science and Technology,2018,15(2):1-9. DOI: 10.3969/j.issn.1672-7169.2018.02.001

    [34] 赵丹,潘竞涛. 改进灵敏度矩阵的矿井通风故障源诊断及传感器布置研究[J]. 中国安全科学学报,2011,21(2):78-84. DOI: 10.3969/j.issn.1003-3033.2011.02.014

    ZHAO Dan,PAN Jingtao. Fault source diagnosis for mine ventilation based on improved sensitivity matrix and its wind speed sensor setting[J]. China Safety Science Journal,2011,21(2):78-84. DOI: 10.3969/j.issn.1003-3033.2011.02.014

    [35] 刘剑,蒋清华,刘丽,等. 矿井通风系统阻变型故障诊断及风速传感器位置优化[J]. 煤炭学报,2021,46(6):1907-1914.

    LIU Jian,JIANG Qinghua,LIU Li,et al. Resistance variant fault diagnosis of mine ventilation system and position optimization of wind speed sensor[J]. Journal of China Coal Society,2021,46(6):1907-1914.

    [36]

    LIU Yujiao,LIU Zeyi,GAO Ke,et al. Efficient graphical algorithm of sensor distribution and air volume reconstruction for a smart mine ventilation network[J]. Sensors,2022,22(6). DOI: 10.3390/s22062096.

    [37] 张浪,刘彦青. 矿井智能通风与关键技术研究[J]. 煤炭科学技术,2024,52(1):178-195. DOI: 10.12438/cst.2023-1987

    ZHANG Lang,LIU Yanqing. Research on technology of key steps of intelligent ventilation in mines[J]. Coal Science and Technology,2024,52(1):178-195. DOI: 10.12438/cst.2023-1987

    [38] 卞欢,刘剑,刘学,等. 基于GA−BP神经网络的巷道平均风速单点测试研究[J]. 中国安全生产科学技术,2023,19(5):57-64.

    BIAN Huan,LIU Jian,LIU Xue,et al. Research on single point test of average wind speed in roadway based on GA-BP neural network[J]. Journal of Safety Science and Technology,2023,19(5):57-64.

    [39] 贾瞳,马恒,高科. 基于相继平均移动法通风网络全局风量优化[J]. 辽宁工程技术大学学报(自然科学版),2023,42(4):412-419. DOI: 10.11956/j.issn.1008-0562.2023.04.005

    JIA Tong,MA Heng,GAO Ke. Global optimization adjustment of ventilation network based on successive average moving method[J]. Journal of Liaoning Technical University(Natural Science),2023,42(4):412-419. DOI: 10.11956/j.issn.1008-0562.2023.04.005

    [40] 谢中朋. 复杂矿井通风系统稳定性研究[D]. 北京:中国矿业大学(北京),2015.

    XIE Zhongpeng. Study on stability of complex mine ventilation system[D]. Beijing:China University of Mining & Technology-Beijing,2015.

    [41] 何敏. 基于相对压力的煤矿通风阻力测定数据处理方法[J]. 工矿自动化,2019,45(11):1-4,48.

    HE Min. Data processing method of coal mine ventilation resistance measurement based on relative pressure[J]. Industry and Mine Automation,2019,45(11):1-4,48.

    [42] 倪景峰,刘雪峰,邓立军. 矿井通风参数缺失数据插补方法[J]. 煤炭学报,2024,49(5):2315-2323.

    NI Jingfeng,LIU Xuefeng,DENG Lijun. Method for filling missing data of mine ventilation parameters[J]. Journal of China Coal Society,2024,49(5):2315-2323.

    [43]

    NI Jingfeng,YANG Shengya,LIU Yujiao. Data cleaning model of mine wind speed sensor based on LOF-GMM and SGAIN[J]. Applied Sciences,2025,15(4). DOI: 10.3390/app15041801.

    [44] 张巍,李雨成,张欢,等. 面向通风智能化的风速传感器结构化数据降噪方法对比[J]. 中国安全生产科学技术,2021,17(8):70-76.

    ZHANG Wei,LI Yucheng,ZHANG Huan, et al. Comparison of structured data noise reduction methods for airflow speed sensor of intelligent ventilation[J]. Journal of Safety Science and Technology,2021,17(8):70-76.

    [45]

    GAO Ke,DENG Lijun,LIU Jian, et al. Study on mine ventilation resistance coefficient inversion based on genetic algorithm[J]. Archives of Mining Sciences,2018,63(4):813-826. DOI: 10.24425/ams.2018.124977

    [46] 沈志远. 面向不平衡数据集的矿井通风系统阻变故障诊断算法研究[D]. 阜新:辽宁工程技术大学,2023.

    SHEN Zhiyuan. Research on algorithm for fault diagnosis of mine ventilation system windage alteration for imbalanced data set [D]. Fuxin:Liaoning Technical University,2023.

    [47] 郭金婷,汪广明,汪文元,等. 基于神经网络算法的井下通风监测与控制系统[J]. 工矿自动化,2024,50(增刊2):29-32.

    GUO Jinting,WANG Guangming,WANG Wenyuan,et al. Underground ventilation monitoring and control system based on neural network algorithm[J]. Journal of Mine Automation,2024,50(S2):29-32.

    [48] 高忠国,温国惠,高建新,等. 基于云平台的矿井智能通风监测与控制系统设计[J]. 矿山机械,2023,51(11):64-70. DOI: 10.3969/j.issn.1001-3954.2023.11.014

    GAO Zhongguo,WEN Guohui,GAO Jianxin,et al. Design of intelligent ventilation monitoring and control system for mines based on cloud platform[J]. Mining & Processing Equipment,2023,51(11):64-70. DOI: 10.3969/j.issn.1001-3954.2023.11.014

    [49] 王斌,王永宝,郝继宝,等. 王楼煤矿智能通风系统优化[J]. 煤矿安全,2019,50(2):105-108.

    WANG Bin,WANG Yongbao,HAO Jibao,et al. Optimization of intelligent ventilation system in Wanglou Coal Mine[J]. Safety in Coal Mines,2019,50(2):105-108.

    [50] 齐俊铭,王凯,王志静,等. 转龙湾煤矿矿井智能化通防系统与信息平台构建[J]. 煤矿安全,2022,53(9):212-220.

    QI Junming,WANG Kai,WANG Zhijing,et al. Construction of mine intelligent ventilation and prevention system and information platform for Zhuanlongwan Coal Mine[J]. Safety in Coal Mines,2022,53(9):212-220.

    [51] 黄德. 矿井通风网络阻变判识智能算法及观测点优化布设研究[D]. 阜新:辽宁工程技术大学,2020.

    HUANG De. Research on intelligent algorithm of mine ventilation network resistance change identification and optimal layout of observation points[D]. Fuxin:Liaoning Technical University,2020.

    [52] 雷洪波,赵吉玉. 打通一矿通风系统隐患排查与智能监控研究[J]. 煤炭技术,2019,38(8):106-109.

    LEI Hongbo,ZHAO Jiyu. Study on hidden trouble investigation and intelligent monitoring of ventilation system in Datong No. 1 Mine[J]. Coal Technology,2019,38(8):106-109.

    [53]

    LUO Wen,ZHAO Youxin. One-class classification model for intelligent fault diagnosis of mine ventilation systems[J]. Scientific Reports,2024. DOI: 10.1038/s41598-024-73527-0.

    [54] 郭岳. 基于数字孪生技术的矿井风流调控虚拟系统设计与开发[D]. 西安:长安大学,2020.

    GUO Yue. Design and development of virtual system for mine airflow regulation based on digital twinning technology[D]. Xi'an:Chang'an University,2020.

    [55] 吴奉亮,高亚超,常心坦. 矿井风网与采空区流场边界耦合模型与求解技术[J]. 中南大学学报(自然科学版),2020,51(8):2333-2342.

    WU Fengliang,GAO Yachao,CHANG Xintan. Boundary coupling model and solution technology of mine ventilation network and gob flow field[J]. Journal of Central South University(Science and Technology),2020,51(8):2333-2342.

    [56] 姜黎明,刘彦青,赵灿. 巷道转弯区域流场特征及局部通风阻力系数计算研究[J]. 煤炭科学技术,2020,48(5):95-102.

    JIANG Liming,LIU Yanqing,ZHAO Can. Study on flow field characteristics and calculation of local ventilation resistance coefficient for turning areas of roadway[J]. Coal Science and Technology,2020,48(5):95-102.

    [57] 李孔清,邹声华,张坻. 巷道内传质对通风阻力的影响[J]. 应用力学学报,2016,33(2):358-364,380.

    LI Kongqing,ZOU Shenghua,ZHANG Chi. Pressure drop due to mass transfer in the tunnels[J]. Chinese Journal of Applied Mechanics,2016,33(2):358-364,380.

    [58]

    JIA Peng,JIA Jinzhang,SONG Lei,et al. Theory of RPOD adjustment of air volume for mine intelligent ventilation[J]. International Journal of Ventilation,2022,21(4):316-329. DOI: 10.1080/14733315.2021.1948720

    [59] 李伟,刘彦青,张浪. 外因火灾通风网络风量风质失效模型与数值解算方法[J/OL]. 煤炭科学技术:1-18. [2025-03-03]. http://kns.cnki.net/kcms/detail/11.240.td.20240521.0838.00.html.

    LI Wei,LIU Yanqing,ZHANG Lang. Model and numerical solution method the failure of air volume and air flow components in the ventilation network during the period of external fire[J/OL]. Coal Science and Technology:1-18[2025-03-03]. http://kns.cnki.net/kcms/detail/11.240.td.20240521.0838.00.html.

    [60] 裴晓东,郝海清,王凯,等. 矿井复杂风网火灾风烟流应急调控技术及应用[J]. 煤炭科学技术,2023,51(5):124-132.

    PEI Xiaodong,HAO Haiqing,WANG Kai,et al. Research and application of fire air and smoke flow emergency control technology for mine complex ventilation network[J]. Coal Science and Technology,2023,51(5):124-132.

    [61]

    ZHONG Deyun,WANG Liguan,WANG Jinmiao,et al. An efficient mine ventilation solution method based on minimum independent closed loops[J]. Energies,2020,13(22). DOI: 10.3390/en13225862.

    [62]

    XU Guang,HUANG Jinxin,NIE Baisheng,et al. Calibration of mine ventilation network models using the non-linear optimization algorithm[J]. Energies,2018,11(1). DOI: 10.3390/en11010031.

    [63] 李潭. 复杂矿井通风系统网络拓扑结构优化及评估应用[D]. 廊坊:华北科技学院,2023.

    LI Tan. Topological structure optimization and evaluation application of complex mine ventilation system network[D]. Langfang:North China Institute of Science and Technology,2023.

    [64]

    LI Junqiao,LI Yucheng,ZHANG Jing,et al. Accurate and real-time network calculation for mine ventilation without wind resistance measurement[J]. Journal of Wind Engineering and Industrial Aerodynamics,2022,230. DOI: 10.1016/j.jweia.2022.105183.

    [65]

    DONG Wang,JIAN Liu,DENG Lijun,et al. A supervised diagnostic experiment of resistance variable multifault locations in a mine ventilation system[J]. Scientific Reports,2023,13(1). DOI: 10.1038/s41598-023-32530-7.

    [66] 陈开岩,周福宝,夏同强,等. 基于空气状态参数与风量耦合迭代的风网解算方法[J]. 中国矿业大学学报,2021,50(4):613-623.

    CHEN Kaiyan,ZHOU Fubao,XIA Tongqiang,et al. Ventilation network solution method based on coupling iteration of air state parameters and air quantity[J]. Journal of China University of Mining & Technology,2021,50(4):613-623.

    [67]

    KUMAR P,HATI A S,KUMAR P. An adaptive neural fuzzy interface structure optimisation for prediction of energy consumption and airflow of a ventilation system[J]. Applied Energy,2023,337. DOI: 10.1016/j.apenergy.2023.120879.

    [68]

    CHEN Sihao,DING Puxian,ZHOU Guang,et al. A novel machine learning-based model predictive control framework for improving the energy efficiency of air-conditioning systems[J]. Energy and Buildings,2023,294. DOI: 10.1016/j.enbuild.2023.113258.

    [69]

    FU Hua,SHU Dandan,KANG Haichao,et al. Hybrid optimization model and its application in prediction of gas emission[J]. Journal of Coal Science and Engineering (China),2012,18(3):280-284. DOI: 10.1007/s12404-012-0310-x

    [70]

    LIU Jianghai. Design of mine ventilation system based on BP neural network optimized by GA[C]. The 8th International Conference on Information Systems Engineering,Dalian,2023:362-365.

    [71] 赵丹,沈志远,宋子豪. 面向不平衡数据集的矿井通风系统智能故障诊断[J]. 煤炭学报,2023,48(11):4112-4123.

    ZHAO Dan,SHEN Zhiyuan,SONG Zihao. Intelligent fault diagnosis of mine ventilation system for imbalanced data sets[J]. Journal of China Coal Society,2023,48(11):4112-4123.

    [72]

    TANG Wenxuan,ZHANG Qilong,CHEN Yin,et al. An intelligent airflow perception model for metal mines based on CNN-LSTM architecture[J]. Process Safety and Environmental Protection,2024,187:1234-1247. DOI: 10.1016/j.psep.2024.05.044

    [73] 龚晓燕,杨晓勇. 矿井局部通风设备系统故障诊断规则[J]. 煤炭科学技术,2006,34(7):23-25,29. DOI: 10.3969/j.issn.0253-2336.2006.07.008

    GONG Xiaoyan,YANG Xiaoyong. Research on fault diagnostics law of mine local ventilation equipment system[J]. Coal Science and Technology,2006,34(7):23-25,29. DOI: 10.3969/j.issn.0253-2336.2006.07.008

    [74] 刘剑,尹昌胜,黄德,等. 矿井通风阻变型故障复合特征无监督机器学习模型[J]. 煤炭学报,2020,45(9):3157-3165.

    LIU Jian,YIN Changsheng,HUANG De,et al. Unsupervised machine learning model for resistance variant fault diagnosis of mine ventilation system with composite features[J]. Journal of China Coal Society,2020,45(9):3157-3165.

    [75] 张浪,张迎辉,张逸斌,等. 基于机器学习的通风网络故障诊断方法研究[J]. 工矿自动化,2022,48(3):91-98.

    ZHANG Lang,ZHANG Yinghui,ZHANG Yibin,et al. Research on fault diagnosis method of ventilation network based on machine learning[J]. Journal of Mine Automation,2022,48(3):91-98.

    [76] 赵丹,沈志远,刘晓青. 基于OCISVM的矿井通风系统在线故障诊断[J]. 中国安全科学学报,2022,32(10):76-82.

    ZHAO Dan,SHEN Zhiyuan,LIU Xiaoqing. Online fault diagnosis of mine ventilation system based on OCISVM[J]. China Safety Science Journal,2022,32(10):76-82.

    [77] 罗永豪. 巷道断面风速分布与煤矿通风系统实时诊断理论研究[D]. 太原:太原理工大学,2015.

    LUO Yonghao. Study on wind speed distribution in roadway section and real-time diagnosis theory of coal mine ventilation system[D]. Taiyuan:Taiyuan University of Technology,2015.

    [78] 曹勇,张晓明,佐佐木久郎,等. 示踪气体诊断井下风流实态及弥散系数测定[J]. 辽宁工程技术大学学报(自然科学版),2017,36(2):165-169.

    CAO Yong,ZHANG Xiaoming,SASAKI Kyuro,et al. Measurement of gas flow state and dispersion coefficient in diagnosis of underground gas[J]. Journal of Liaoning Technical University(Natural Science),2017,36(2):165-169.

    [79] 蒋成龙. 基于三维监控模型的通风参数监测优化与通风系统故障溯源研究[D]. 淮南:安徽理工大学,2022.

    JIANG Chenglong. Research on monitoring optimization of ventilation parameters and fault tracing of ventilation system based on monitoring system[D]. Huainan:Anhui University of Science & Technology,2022.

    [80] 魏连江,周福宝,夏同强,等. 矿井智能通风与灾变应急决策平台[J]. 中国安全科学学报,2022,32(9):158-167.

    WEI Lianjiang,ZHOU Fubao,XIA Tongqiang,et al. Mine intelligent ventilation and disaster emergency decision platform[J]. China Safety Science Journal,2022,32(9):158-167.

    [81] 郭炜舟,沈斌,汪洋,等. 葫芦素煤矿智能通风系统建设与应用[J]. 煤矿安全,2022,53(9):233-238.

    GUO Weizhou,SHEN Bin,WANG Yang,et al. Construction and application of intelligent ventilation system in Hulusu Coal Mine[J]. Safety in Coal Mines,2022,53(9):233-238.

    [82] 钟德云,文历学,王李管. 基于混合整数规划的风流两步骤调控优化方法[J]. 黄金科学技术,2024,32(2):356-365.

    ZHONG Deyun,WEN Lixue,WANG Liguan. Two-step optimization method for airflow control based on mixed integer programming[J]. Gold Science and Technology,2024,32(2):356-365.

    [83] 王磊,王凯. 长距离掘进工作面局部通风智能联动调控研究[J]. 工矿自动化,2023,49(9):55-63.

    WANG Lei,WANG Kai. Research on intelligent linkage regulation and control of local ventilation in long distance heading face[J]. Journal of Mine Automation,2023,49(9):55-63.

    [84] 王凯,裴晓东,杨涛,等. 矿井智能通风联动调控理论与供需匹配实验研究[J]. 工程科学学报,2023,45(7):1214-1224.

    WANG Kai,PEI Xiaodong,YANG Tao,et al. Study on intelligent ventilation linkage control theory and supply-demand matching experiment in mines[J]. Chinese Journal of Engineering,2023,45(7):1214-1224.

    [85] 吴新忠,韩正化,魏连江,等. 矿井风流智能按需调控算法与关键技术[J]. 中国矿业大学学报,2021,50(4):725-734.

    WU Xinzhong,HAN Zhenghua,WEI Lianjiang,et al. Intelligent on-demand adjustment algorithm and key technology of mine air flow[J]. Journal of China University of Mining & Technology,2021,50(4):725-734.

    [86]

    LI Junqiao,LI Yucheng,ZHANG Wei,et al. Multi-objective intelligent decision and linkage control algorithm for mine ventilation[J]. Energies,2022,15(21). DOI: 10.3390/en15217980.

    [87] 邢永亮,曹金龙. 煤矿智能化通风安全管控研究[J]. 工矿自动化,2021,47(增刊2):52-55.

    XING Yongliang,CAO Jinlong. Research on safety management and control of coal mine intelligent ventilation[J]. Industry and Mine Automation,2021,47(S2):52-55.

    [88] 范京道,李川,闫振国. 融合5G技术生态的智能煤矿总体架构及核心场景[J]. 煤炭学报,2020,45(6):1949-1958.

    FAN Jingdao,LI Chuan,YAN Zhenguo. Overall architecture and core scenario of a smart coal mine in-corporating 5G technology ecology[J]. Journal of China Coal Society,2020,45(6):1949-1958.

    [89] 王振平,闫振国,岳宁,等. 矿井“一通三防”智能管控系统研究[J]. 煤矿安全,2022,53(9):193-197.

    WANG Zhenping,YAN Zhenguo,YUE Ning,et al. Research on intelligent control system of "one ventilation and three prevention" in coal mines[J]. Safety in Coal Mines,2022,53(9):193-197.

    [90] 毛善君,景超,李团结,等. 基于4DGIS的智能化矿区云平台关键技术研究及应用[J]. 煤炭学报,2023,48(7):2626-2640.

    MAO Shanjun,JING Chao,LI Tuanjie,et al. Research and application of key technologies of intelligent mining area cloud platform based on 4DGIS[J]. Journal of China Coal Society,2023,48(7):2626-2640.

    [91] 王国法,富佳兴,孟令宇. 煤矿智能化创新团队建设与关键技术研发进展[J]. 工矿自动化,2022,48(12):1-15.

    WANG Guofa,FU Jiaxing,MENG Lingyu. Development of innovation team construction and key technology research in coal mine intelligence[J]. Journal of Mine Automation,2022,48(12):1-15.

  • 期刊类型引用(11)

    1. 李典泽,许华杰,张勃. 基于微震信号深度特征学习的岩石破裂类型识别. 工矿自动化. 2025(03): 156-164 . 本站查看
    2. 何彬,周云耀,吕永清. 结合U-net与FPN的地震初至波拾取算法. 测绘地理信息. 2024(01): 82-87 . 百度学术
    3. 陈仲杰,闭水劲,董陇军,杨龙斌. 金川二矿区采场震源精细定位与时空演化规律研究. 矿业研究与开发. 2024(07): 135-141 . 百度学术
    4. 宋成林,黄晓冉,邢帅,芦楠楠. 基于隐半马尔可夫模型的微震信号分割方法. 中国科技论文. 2024(08): 868-876 . 百度学术
    5. 李铁牛,胡宾鑫,李化坤,耿文成,郝鹏程,纪旭波,孙增荣,朱峰,张华,阳铖权. 基于改进支持向量机的微震初至波到时自动拾取方法. 工矿自动化. 2023(03): 63-69 . 本站查看
    6. 阳铖权,胡宾鑫,李化坤,耿文成,郝鹏程,纪旭波,孙增荣,朱峰,张华,李铁牛. 基于改进小波阈值去噪与分形盒维数的矿山微震初至波到时拾取研究. 矿业研究与开发. 2023(04): 125-132 . 百度学术
    7. 蒋沛凡,邓飞,严星. 基于Swin Transformer特征提取的微地震初至拾取方法. 地球物理学进展. 2023(03): 1132-1142 . 百度学术
    8. 胡慧江,李利平,靳昊,陈彦好,王升,黄瑞哲. 基于高阶统计量偏斜度和赤池信息准则的突涌水微振信号初至拾取方法. 工业建筑. 2023(05): 132-136+195 . 百度学术
    9. 刘洋,李冒金. FPGA与北斗的高精度时差信息获取系统设计. 单片机与嵌入式系统应用. 2022(07): 59-61 . 百度学术
    10. 曹杰锋,刘海鹏,周嘉琦,李坡,梁昌晶. 基于LMD-STA/LTA模型的油气管道泄漏检测方法. 世界石油工业. 2022(04): 71-76 . 百度学术
    11. 邓飞,蒋沛凡,蒋先艺,帅鹏飞,唐云. 应用图像语义分割网络的微地震事件识别和初至拾取方法. 石油地球物理勘探. 2022(05): 1011-1019+999 . 百度学术

    其他类型引用(9)

图(3)  /  表(2)
计量
  • 文章访问数:  40
  • HTML全文浏览量:  11
  • PDF下载量:  11
  • 被引次数: 20
出版历程
  • 收稿日期:  2025-03-11
  • 修回日期:  2025-04-14
  • 网络出版日期:  2025-05-06
  • 刊出日期:  2025-04-14

目录

    /

    返回文章
    返回