非均厚特厚煤层开采高位组合悬臂板结构运动致灾机制

朱卫兵, 郭春雷, 罗讯, 柴发英, 谢建林, 柴毅

朱卫兵,郭春雷,罗讯,等. 非均厚特厚煤层开采高位组合悬臂板结构运动致灾机制[J]. 工矿自动化,2024,50(12):1-10. DOI: 10.13272/j.issn.1671-251x.18232
引用本文: 朱卫兵,郭春雷,罗讯,等. 非均厚特厚煤层开采高位组合悬臂板结构运动致灾机制[J]. 工矿自动化,2024,50(12):1-10. DOI: 10.13272/j.issn.1671-251x.18232
ZHU Weibing, GUO Chunlei, LUO Xun, et al. Disaster-inducing mechanism of the movement of high-position combination cantilever plate structures in non-uniform and extra-thick coal seam mining[J]. Journal of Mine Automation,2024,50(12):1-10. DOI: 10.13272/j.issn.1671-251x.18232
Citation: ZHU Weibing, GUO Chunlei, LUO Xun, et al. Disaster-inducing mechanism of the movement of high-position combination cantilever plate structures in non-uniform and extra-thick coal seam mining[J]. Journal of Mine Automation,2024,50(12):1-10. DOI: 10.13272/j.issn.1671-251x.18232

非均厚特厚煤层开采高位组合悬臂板结构运动致灾机制

基金项目: 国家自然科学基金资助项目(52074265);国家重点研发计划资助项目(2021YFC2902101)。
详细信息
    作者简介:

    朱卫兵(1978—),男,江苏南通人,教授,博士,主要研究方向为岩层移动与绿色开采,E-mail:zweibing@163.com

    通讯作者:

    罗讯(2000—),男,贵州毕节人,博士研究生,主要研究方向为矿山压力与岩层控制,E-mail:02180344@cumt.edu.cn

  • 中图分类号: TD325

Disaster-inducing mechanism of the movement of high-position combination cantilever plate structures in non-uniform and extra-thick coal seam mining

  • 摘要:

    非均厚特厚煤层开采会显著影响采场顶板破断结构形式,进而对工作面矿压显现造成极大影响。为了揭示甘肃某矿深部特厚煤层开采顶板大能量事件发生机理,采用数值模拟、物理模拟、钻孔探测及内部岩移监测方法,研究了非均厚特厚煤层开采顶板破断结构形式及致灾机制。结果表明:40 m累计采厚区域的裂隙发育高度远大于20 m采厚区域,导致后者上方易形成高位组合悬臂板结构,确定该结构破断运动是造成顶板灾害发生的主要原因,并得到了模拟结果的验证。根据4个地面钻孔钻进过程中的冲洗液漏失及掉钻情况,发现首采4 m厚油页岩解放层的裂隙发育高度仅为75 m,位于亚关键层2底界;煤二层20,40 m采厚区域的裂隙发育高度分别为289,504 m,大致位于亚关键层4和主关键层底界,揭示了不同采厚区域顶板采动裂隙发育差异,进一步证实了高位组合悬臂板结构的客观存在。结合ZY1地面钻孔内部岩移光纤断点高度变化与大能量事件之间的关联,明确了高位组合悬臂板破断结构运动引发采场强矿压显现的致灾机制。研究结果可为类似非均厚煤层赋存或特厚煤层分层开采条件下的工作面安全高效生产提供参考。

    Abstract:

    The mining of non-uniform and extra-thick coal seams significantly affects the roof breaking structure in the mining field, which greatly impacts the mining pressure behavior in the working face. To reveal the mechanism behind the occurrence of large-energy events in the roof during the mining of extra-thick coal seams at a deep mine in Gansu Province, numerical simulation, physical simulation, borehole detection, and internal rock movement monitoring were used to investigate the roof breaking structure and disaster-inducing mechanism in the mining of non-uniform and extra-thick coal seams. The results showed that the fracture development height in the 40 m cumulative mining thickness area was much greater than that in the 20 m mining thickness area, leading to the formation of high-position combination cantilever plate structure above the 20 m mining thickness area. It was determined that the breaking movement of the structure was the main cause of roof disasters, and this was validated by the simulation results. Based on the flushing fluid leakage and drill falling during the drilling process of four ground boreholes, it was found that the fracture development height of the first mined 4 m thick oil shale liberated seam was only 75 m, located at the bottom boundary of subordinate key stratum 2. The fracture development heights in the 20 m and 40 m mining thickness areas of the second coal seam were 289 m and 504 m, respectively, approximately located at the bottom boundary of sub-key stratum 4 and the main key stratum, revealing the differences in roof fracture development in different mining thickness areas and further confirming the objective existence of the high-position combination cantilever plate structure. By correlating the changes in the internal rock movement optical fiber measurements with large-energy events in the ZY1 ground borehole, the disaster-inducing mechanism, whereby the movement of high-position combination cantilever plate structures triggered strong mining pressure manifestation, was clarified. The research results provide reference for safe and efficient production in working faces under similar conditions of non-uniform coal seam distribution or stratified mining of extra-thick coal seam.

  • 【编者按】随着我国矿产资源开采逐步向深部转移,确保深部资源安全高效开采,已成为我国亟待解决的战略科技问题。针对深部环境下采动岩层运动引起的安全问题,掌握深部环境下采动岩层的运动规律,加强覆岩破坏与地压灾害智能化实时监测预警技术研究,是提升矿山灾害智能防控水平、保障深部资源安全高效开采的关键。为总结交流科研成果,进一步推动深部环境下采动灾害智能防控技术攻关,助力煤炭行业高质量发展,《工矿自动化》编辑部特邀中国矿业大学朱卫兵教授、中国矿业大学(北京)杨胜利教授担任客座主编,中煤科工开采研究院潘俊锋研究员、西安科技大学解盘石教授担任客座副主编,于2024年第12期组织出版“深部开采覆岩破坏与地压灾害多源信息监测及预警技术”专题。在专题刊出之际,衷心感谢各位专家学者的大力支持!
  • 图  1   6125−1工作面与邻近工作面位置关系

    Figure  1.   The relationship between the position of 6125-1 working face and the adjacent working face

    图  2   关键层位置判别结果

    Figure  2.   The determination result of key stratum position

    图  3   数值模型

    Figure  3.   Numerical model

    图  4   煤二层工作面不同采高下垂直位移云图

    Figure  4.   Vertical displacement cloud map of the second coal seam working face at different mining heights

    图  5   非均厚开采条件下采场垂直应力分布曲线

    Figure  5.   Vertical stress distribution curves of stope under non-uniform thickness mining conditions

    图  6   物理模型

    Figure  6.   Physical model

    图  7   非均厚特厚煤层工作面开采过程

    Figure  7.   The mining process of working face of the non-uniform thickness and extra-thick coal seam

    图  8   非均厚特厚煤层开采顶板破断结构演化素描图

    Figure  8.   Sketch of the top roof breakage structure evolution in non-uniform thickness and extra-thick seam mining

    图  9   分布式压力薄膜及其布置位置

    Figure  9.   Distributed pressure films and its arrangement locations

    图  10   1号和3号压力薄膜应力变化

    Figure  10.   Changes in the stress values of pressure films No.1 and No.3

    图  11   各分布式压力薄膜应力变化曲线

    Figure  11.   The stress variation curves of each distributed pressure film

    图  12   非均厚开采顶板破断结构模型

    Figure  12.   Fracture structure model of non-uniform thickness mining roof

    图  13   非均厚特厚煤层开采覆岩结构

    Figure  13.   Overburden structure of non-uniform thickness and extra-thick coal seam

    图  14   ZY1内部岩移钻孔地面监测装备

    Figure  14.   Surface monitoring equipment of ZY1 internal rock moving borehole

    图  15   ZY1钻孔分布式光纤微应变情况

    Figure  15.   Distributed fiber microstrain in ZY1 borehole

    图  16   不同时段ZY1钻孔分布式光纤微应变与大能量事件变化

    Figure  16.   The change of distributed fiber microstrain in ZY1 borehole and large energy events

    表  1   数值模拟岩层岩性参数

    Table  1   Numerical simulation parameters of rock lithology

    岩性 密度/
    (kg·m−3
    体积模
    量/GPa
    剪切模
    量/GPa
    黏聚力/
    MPa
    内摩擦
    角/(˚)
    抗拉强
    度/MPa
    松散层 2400 2.40 2.10 3.5 30 2.8
    粉砂岩 2600 8.50 5.50 9.0 42 8.5
    细砂岩 2550 8.20 5.20 10.0 45 7.5
    中砂岩 2500 7.80 5.50 8.5 42 6.5
    泥岩 2200 4.20 3.80 4.8 36 5.0
    砂质泥岩 2300 4.20 3.70 4.5 36 5.2
    油页岩 2450 3.50 3.70 6.8 40 2.5
    煤二层 1400 2.20 1.20 3.5 35 1.7
    下载: 导出CSV

    表  2   物理相似材料配比参数

    Table  2   Physical simulation material ratio parameters

    序号 岩性 配比号 厚度/cm 累计采厚/cm
    1 软岩 673 5 170
    2 PKS 437 9 165
    3 软岩 673 16 156
    4 KS6 773 13 140
    5 软岩 673 1 127
    6 KS5 773 7 126
    7 软岩 673 15 119
    8 KS4 455 10 104
    9 软岩 673 15 94
    10 KS3 455 6 79
    11 软岩 673 22 73
    12 KS2 455 8 51
    13 软岩 673 10 43
    14 KS1 455 9 33
    15 软岩 673 3.5 24
    16 油页岩 773 1 20.5
    17 软岩 673 3.5 19.5
    18 煤层 773 6~11 16
    19 底板 673 5 5
    下载: 导出CSV
  • [1] 于斌,朱卫兵,高瑞,等. 特厚煤层综放开采大空间采场覆岩结构及作用机制[J]. 煤炭学报,2016,41(3):571-580.

    YU Bin,ZHU Weibing,GAO Rui,et al. Strata structure and its effect mechanism of large space stope for fullymechanized sublevel caving mining of extremely thick coal seam[J]. Journal of China Coal Society,2016,41(3):571-580.

    [2] 朱卫兵,于斌. 大空间采场远场关键层破断形式及其对矿压显现的影响[J]. 煤炭科学技术,2018,46(1):99-104.

    ZHU Weibing,YU Bin. Breakage form and its effect on strata behavior of far field key stratum in large space stope[J]. Coal Science and Technology,2018,46(1):99-104.

    [3] 朱卫兵,于斌,鞠金峰,等. 采场顶板关键层“横U−Y” 型周期破断特征的试验研究[J]. 煤炭科学技术,2020,48(2):36-43.

    ZHU Weibing,YU Bin,JU Jinfeng,et al. Experimental study on "horizontal U-Y" periodical breakage characteristics of key strata in stope roof[J]. Coal Science and Technology,2020,48(2):36-43.

    [4] 朱卫兵. 大采高开采高位关键层运动致灾机理研究[J]. 晋控科学技术,2023(1):1-6.

    ZHU Weibing. Study on the mechanism of disaster caused by movement of high position key stratum in large mining height coal mine[J]. Jinneng Holding Science and Technology,2023(1):1-6.

    [5] 轩大洋,许家林,朱卫兵,等. 注浆充填控制巨厚火成岩下动力灾害的试验研究[J]. 煤炭学报,2012,37(12):1967-1974.

    XUAN Dayang,XU Jialin,ZHU Weibing,et al. Field test on dynamic disaster control by grouting below extremely thick igneous rock[J]. Journal of China Coal Society,2012,37(12):1967-1974.

    [6] 窦林名,王永忠,卢方舟,等. 急倾斜特厚煤层冲击地压防治探索与总结[J]. 煤炭科学技术,2024,52(1):84-94. DOI: 10.12438/cst.2023-1700

    DOU Linming,WANG Yongzhong,LU Fangzhou,et al. Exploration and summary of prevention and control of rock burst in steeply inclined and ultra-thick coal seam[J]. Coal Science and Technology,2024,52(1):84-94. DOI: 10.12438/cst.2023-1700

    [7] 吴锋锋,岳鑫,刘长友,等. 急倾斜特厚煤层开采覆岩结构演化特征及支架工作阻力计算[J]. 采矿与安全工程学报,2022,39(3):499-506.

    WU Fengfeng,YUE Xin,LIU Changyou,et al. Movement law of overburden in steep inclined ultra thick seam and calculation of support working resistance[J]. Journal of Mining & Safety Engineering,2022,39(3):499-506.

    [8] 于斌,匡铁军,杨敬轩,等. 特厚煤层开采坚硬顶板覆岩结构及其演化特征分析[J]. 煤炭科学技术,2023,51(1):95-104.

    YU Bin,KUANG Tiejun,YANG Jingxuan,et al. Analysis of overburden structure and evolution characteristics of hard roof mining in extremely thick coal seam[J]. Coal Science and Technology,2023,51(1):95-104.

    [9] 霍丙杰,于斌,张宏伟,等. 多层坚硬顶板采场覆岩“拱壳” 大结构形成机理研究[J]. 煤炭科学技术,2016,44(11):18-23.

    HUO Bingjie,YU Bin,ZHANG Hongwei,et al. Study on formation mechanism of arch shell large structure of overburden in coal mining face with multi layer hard roof[J]. Coal Science and Technology,2016,44(11):18-23.

    [10] 刘怀东,刘长友,杨培举,等. 向斜构造区特厚煤层开采覆岩结构稳定性及突水压架机理[J]. 煤炭学报,2024,49(9):3745-3758.

    LIU Huaidong,LIU Changyou,YANG Peiju,et al. Structural stability of overlying rock and mechanism of water inrush and support crushing in extra-thick coal seam mining within syncline structural area[J]. Journal of China Coal Society,2024,49(9):3745-3758.

    [11] 来兴平,朱浩宇,郭中安,等. 浅埋煤层沟谷区高位关键层破断动载机理及应用[J]. 采矿与安全工程学报,2024,41(5):879-888.

    LAI Xingping,ZHU Haoyu,GUO Zhong'an,et al. Breaking dynamic load mechanism and application of high key strata in gully area of shallow coal seam[J]. Journal of Mining & Safety Engineering,2024,41(5):879-888.

    [12] 许家林,朱卫兵,王晓振,等. 沟谷地形对浅埋煤层开采矿压显现的影响机理[J]. 煤炭学报,2012,37(2):179-185.

    XU Jialin,ZHU Weibing,WANG Xiaozhen,et al. Influencing mechanism of gully terrain on ground pressure behaviors in shallow seam longwall mining[J]. Journal of China Coal Society,2012,37(2):179-185.

    [13] 朱卫兵,许家林,鞠金峰. 浅埋煤层开采压架机理及防治[M]. 北京:科学出版社,2022.

    ZHU Weibing,XU Jialin,JU Jinfeng. Mechanism of support crushing in shallow coal mining and its prevention[M]. Beijing:Science Press,2022.

    [14] 蒋金泉,张培鹏,潘立友,等. 重复采动下上覆高位巨厚岩层微震分布特征研究[J]. 煤炭科学技术,2015,43(1):21-24.

    JIANG Jinquan,ZHANG Peipeng,PAN Liyou,et al. Study on micro-seismic distribution characteristics of high-position and ultra thick hard overlying strata under repeated mining[J]. Coal Science and Technology,2015,43(1):21-24.

    [15] 王国法,庞义辉. 特厚煤层大采高综采综放适应性评价和技术原理[J]. 煤炭学报,2018,43(1):33-42.

    WANG Guofa,PANG Yihui. Full-mechanized coal mining and caving mining method evaluation and key technology for thick coal seam[J]. Journal of China Coal Society,2018,43(1):33-42.

    [16] 王家臣,吕华永,王兆会,等. 特厚煤层卸压综放开采技术原理的实验研究[J]. 煤炭学报,2019,44(3):906-914.

    WANG Jiachen,LYU Huayong,WANG Zhaohui,et al. Technical principle and experimental study on fully mechanized top-coal caving mining after extracting the middle slice in extremely thick coal seam[J]. Journal of China Coal Society,2019,44(3):906-914.

    [17] 周坤友,窦林名,李家卓,等. 巨厚关键层对冲击矿压动静载作用机制研究[J]. 采矿与安全工程学报,2024,41(5):908-919.

    ZHOU Kunyou,DOU Linming,LI Jiazhuo,et al. Effect of extra-thick key strata on the static and dynamic stress of rockburst[J]. Journal of Mining and Safety Engineering,2024,41(5):908-919.

    [18] 尚晓光,朱斯陶,姜福兴,等. 地面直井水压致裂防控巨厚硬岩运动型矿震试验研究[J]. 煤炭学报,2021,46(增刊2):639-650.

    SHANG Xiaoguang,ZHU Sitao,JIANG Fuxing,et al. Experimental study on the prevention and control of mine earthquake by high pressure water fracturing of huge thick strata in vertical shaft[J]. Journal of China Coal Society,2021,46(S2):639-650.

    [19] 于斌,邰阳,匡铁军,等. 大空间采场远近场坚硬顶板井上下控制理论及技术体系[J]. 煤炭学报,2023,48(5):1875-1893.

    YU Bin,TAI Yang,KUANG Tiejun,et al. Theory and technical system of control of far-near field hard roofs from ground and underground in a large space stope[J]. Journal of China Coal Society,2023,48(5):1875-1893.

    [20] 齐庆新,马世志,孙希奎,等. 煤矿冲击地压源头防治理论与技术架构[J]. 煤炭学报,2023,48(5):1861-1874.

    QI Qingxin,MA Shizhi,SUN Xikui,et al. Theory and technical framework of coal mine rock burst origin prevention[J]. Journal of China Coal Society,2023,48(5):1861-1874.

    [21] 郝宪杰,孙希奎,唐忠义,等. 覆岩高位整层爆破卸压 “人造预裂层” 源头防治冲击地压技术体系及应用[J]. 煤炭学报,2024,49(3):1318-1331.

    HAO Xianjie,SUN Xikui,TANG Zhongyi,et al. Technology system and application of "artificial pre-fracture layer" by high level whole layer blasting for pressure releasing to source prevention and control of rockburst[J]. Journal of China Coal Society,2024,49(3):1318-1331.

    [22] 朱卫兵,宁杉,曹安业,等. 非均厚“弓形”巨厚关键层动静载作用机制[J]. 煤炭学报,2024,49(10):4311-4324.

    ZHU Weibing,NING Shan,CAO Anye,et al. Dynamic and static load effect of non-uniformly "bow-shaped" super-thick key strata[J]. Journal of China Coal Society,2024,49(10):4311-4324.

    [23] 宁杉,朱卫兵,娄金福,等. 高位巨厚关键层破断致灾机理及防治[M]. 徐州:中国矿业大学出版社,2024.

    NING Shan,ZHU Weibing,LOU Jinfu,et al. Disaster-causing mechanisms of high position ultra-thick key stratum fracture and its prevention[M]. Xuzhou:Press of China University of Mining and Technology,2024.

    [24] 张志发. 急倾斜非均厚煤层高效开采工艺研究[J]. 能源与环保,2017,39(2):87-91.

    ZHANG Zhifa. Study on high-efficient mining technics for steeply inclined and heterogeneity thick coal seams[J]. China Energy and Environmental Protection,2017,39(2):87-91.

    [25] 朱卫兵,王晓振,谢建林,等. 矿山采动覆岩内部岩移原位监测技术进展及应用[J]. 工矿自动化,2023,49(9):1-12.

    ZHU Weibing,WANG Xiaozhen,XIE Jianlin,et al. In-situ monitoring technology of full column overburden movement and its application[J]. Journal of Mine Automation,2023,49(9):1-12.

    [26] 谢建林,王晓振,朱卫兵,等. 全柱状覆岩运动原位监测技术及应用[M]. 徐州:中国矿业大学出版社,2024.

    XIE Jianlin,WANG Xiaozhen,ZHU Weibing,et al. In-situ monitoring technology for overburden movement in mining and its application[M]. Xuzhou:Press of China University of Mining and Technology,2024.

  • 期刊类型引用(7)

    1. 魏宗新,杨立民. 炼化用离心分离机的工程应用. 化工设计通讯. 2023(03): 75-78 . 百度学术
    2. 袁惠新,王伟鹏,付双成,戴如昊,周发戚. 卧式螺旋卸料沉降离心机螺旋空心轴内表面磨损的研究. 流体机械. 2023(12): 9-15 . 百度学术
    3. 刘丽艳,刘小康,樊东东,李昱奇,谭蔚,朱国瑞. 卧螺离心机进料分布器的流场模拟与结构优化. 天津大学学报(自然科学与工程技术版). 2021(01): 35-41 . 百度学术
    4. 谈志超,刘雪东,郭文元,张炜. 卧式螺旋离心机操作参数对粉煤气化灰水分离特性的影响. 机械设计与制造. 2021(04): 11-14 . 百度学术
    5. 付双成,张亚磊,姜毓圣,袁惠新. 卧螺离心机不同螺旋结构流场的数值模拟研究. 常州大学学报(自然科学版). 2020(01): 56-61 . 百度学术
    6. 陈美岭,许亚茹,许忠义,李振铭,刘振兴. 聚氯乙烯干燥系统离心机出现的问题及解决方案. 盐科学与化工. 2020(01): 52-54 . 百度学术
    7. 张建中,李峰,胡化增,张广浩,刘海洋. 矿用LW800卧螺离心机转鼓锥角结构优化. 流体机械. 2019(07): 11-14+38 . 百度学术

    其他类型引用(5)

图(16)  /  表(2)
计量
  • 文章访问数:  379
  • HTML全文浏览量:  17
  • PDF下载量:  40
  • 被引次数: 12
出版历程
  • 收稿日期:  2024-12-11
  • 修回日期:  2024-12-14
  • 网络出版日期:  2025-01-02
  • 刊出日期:  2024-12-24

目录

    /

    返回文章
    返回