交叉扇形断顶爆破防治临空回采巷道冲击地压技术

潘俊锋, 刘少虹, 马文涛, 高家明, 马宏源

潘俊锋,刘少虹,马文涛,等. 交叉扇形断顶爆破防治临空回采巷道冲击地压技术[J]. 工矿自动化,2024,50(12):11-17. DOI: 10.13272/j.issn.1671-251x.18230
引用本文: 潘俊锋,刘少虹,马文涛,等. 交叉扇形断顶爆破防治临空回采巷道冲击地压技术[J]. 工矿自动化,2024,50(12):11-17. DOI: 10.13272/j.issn.1671-251x.18230
PAN Junfeng, LIU Shaohong, MA Wentao, et al. Cross fan-shaped roof-cutting blasting technology for preventing rockbursts in gob-side mining roadways[J]. Journal of Mine Automation,2024,50(12):11-17. DOI: 10.13272/j.issn.1671-251x.18230
Citation: PAN Junfeng, LIU Shaohong, MA Wentao, et al. Cross fan-shaped roof-cutting blasting technology for preventing rockbursts in gob-side mining roadways[J]. Journal of Mine Automation,2024,50(12):11-17. DOI: 10.13272/j.issn.1671-251x.18230

交叉扇形断顶爆破防治临空回采巷道冲击地压技术

基金项目: 国家重点研发计划项目(2022YFC3004604)。
详细信息
    作者简介:

    潘俊锋( 1979—) ,男,陕西旬邑人,研究员,博士,主要从事冲击地压、矿井岩层控制与安全高效开采等方面的研究工作,E-mail:panjunfeng@yeah.net

  • 中图分类号: TD324

Cross fan-shaped roof-cutting blasting technology for preventing rockbursts in gob-side mining roadways

  • 摘要:

    针对冲击地压临空回采巷道超前支护区域频繁发生冲击地压问题,以某严重冲击地压矿井为例,在深入分析41次冲击地压发生规律基础上,建立了本面采空区与侧向采空区上覆顶板连通作用工程力学模型,揭示了其诱发冲击机理,提出了交叉扇形断顶爆破防冲技术。研究结果表明:临空巷道侧向支承压力、侧向采空区支承压力、工作面超前支承压力和巷道交叉对冲击地压具有显著影响,叠加因素越多,发生冲击地压的概率越大,本面采空区与侧向采空区上覆厚硬顶板连通叠加作用是主控因素;本面采空区与侧向采空区上覆厚硬顶板连通形成直角扇形悬顶结构,大面积悬顶为冲击启动提供静载荷,达到极限垮断时提供动载荷,是冲击地压启动的载荷来源;临空巷道内超前支承压力影响区域是冲击危险性最高的区域,在该区域内实施交叉扇形断顶爆破卸压技术,可有效缩短侧向采空区、本面采空区连通直角扇形悬顶长度,降低动载荷源强度。研究为临空巷道回采期间冲击地压频繁发生提供了防治思路与方法。

    Abstract:

    This study investigated the frequent occurrence of rockbursts in the advanced support areas of gob-side mining roadways. Taking a mine with severe rockburst occurrences as an example, based on an in-depth analysis of the occurrence patterns of 41 rockburst events, an engineering mechanics model of the interaction between the overlying roof of bocal goaf and the lateral goaf was developed. The triggering mechanism was revealed and cross fan-shaped roof-cutting blasting technology for preventing rockburst was proposed. The results showed that lateral support pressure in the gob-side roadways, support pressure in the lateral goaf area, advanced support pressure in the working face, and roadway intersections all have a significant impact on the occurrence of rockbursts. The probability of rockbursts increased with the number of interacting factors, with the combined effect of the overlying thick and hard roof in both the local and the lateral primary goaf as the primary controlling factor. The interaction between these areas formed a right-angle fan-shaped hanging roof structure. The large hanging roof provided static load, which triggered rockbursts, and dynamic load when ultimate collapse occurred, thus acting as the load source for the occurrence of rockbursts. The area influenced by advanced support pressure in the gob-side roadway was identified as the highest-risk zone for rockbursts. Implementing cross fan-shaped roof-cutting blasting technology in this zone effectively shortened the length of the right-angle fan-shaped hanging roof connecting the lateral goaf and the local goaf, thereby reducing the intensity of the dynamic load source. This study provides a novel approach and methodology for preventing and controlling the frequent occurrence of rockbursts during gob-side roadway mining.

  • 图  1   某煤矿4号煤层工作面布置

    Figure  1.   Working face layout in No.4 coal seam in a coal mine

    图  2   采深变化与冲击地压的对应关系

    Figure  2.   Relationship between mining depth variations and rockbursts

    图  3   冲击地压位置与向斜轴部的距离统计

    Figure  3.   Distance from rockburst location to syncline axis

    图  4   巷道交叉口对冲击地压的影响统计

    Figure  4.   Impact statistics of roadway intersection on rockburst

    图  5   临空巷道侧向F型悬臂结构[19]

    Figure  5.   Lateral F-shaped cantilever structure of gob-side roadway[19]

    图  6   采场后方F型悬臂结构[19]

    Figure  6.   F-shaped cantilever structure behind stope[19]

    图  7   悬空顶板导通形成大L型力源区域[19]

    Figure  7.   Large L-shaped force source area caused by suspended roof connection[19]

    图  8   临空巷道、采场“双F大L”力源结构[19]

    Figure  8.   Structure of "double-F-large-L" force source in gob-side roadways and stope[19]

    图  9   工作面倾向顶板爆破扇形孔布置

    Figure  9.   Layout of fan-shaped blasting holes in the inclined roof of working face

    图  10   工作面走向顶板爆破扇形孔布置

    Figure  10.   Layout of fan-shaped blasting hole in the directional roof of working face

    图  11   卸压前后冲击危险性指数分布

    Figure  11.   Distribution of impact hazard index before and after pressure relief

    表  1   41次冲击地压案例对应的地表标高及采深变化情况

    Table  1   Surface elevation and mining depth variations corresponding to 41 rockburst cases

    地表标高/m 冲击巷道底板标高/m 采深/m 冲击次数
    860.0 372.7 487.3 1
    860.0 368.4 491.6 4
    860.0 368.2 491.8 1
    860.0 366.4 493.6 1
    860.0 365.0 495.0 2
    860.0 364.8 495.2 2
    880.0 371.1 508.9 1
    890.0 372.2 517.8 1
    890.0 371.1 518.9 1
    910.0 375.0 535.0 1
    940.0 378.8 561.2 1
    940.0 375.0 565.0 1
    960.0 378.8 581.2 1
    960.0 378.4 581.6 1
    980.0 378.4 601.6 1
    990.0 378.8 611.2 1
    990.0 378.4 611.6 4
    990.0 375.0 615.0 1
    1 000.0 378.4 621.6 1
    1 010.0 378.4 631.6 1
    1 020.0 377.2 642.8 1
    1 030.0 380.4 649.6 1
    1 030.0 377.2 652.8 1
    1 045.0 378.4 666.6 2
    1 061.0 387.9 673.1 1
    1 060.0 383.1 676.9 1
    1 060.0 377.2 682.8 1
    1 068.0 383.1 684.9 3
    1 071.0 383.1 687.9 1
    1 072.0 381.5 690.5 1
    下载: 导出CSV

    表  2   采空区悬顶对冲击地压的影响

    Table  2   Inpact of suspended roof in the gob on rockbursts

    采空区悬顶的影响特征 冲击次数 发生位置
    工作面超前支承压力 2 运输巷和灌浆巷(非临空)
    采空区侧向支承压力 7 回风巷(临空、远离工作面)
    采空区侧向支承压力+
    工作面超前支承压力
    32 回风巷(临空、靠近工作面)
    下载: 导出CSV
  • [1] 潘俊锋,夏永学,王书文,等. 我国深部冲击地压防控工程技术难题及发展方向[J]. 煤炭学报,2024,49(3):1291-1302.

    PAN Junfeng,XIA Yongxue,WANG Shuwen,et al. Technical difficulties and emerging development directions of deep rock burst prevention in China[J]. Journal of China Coal Society,2024,49(3):1291-1302.

    [2] 潘一山. 煤矿冲击地压扰动响应失稳理论及应用[J]. 煤炭学报,2018,43(8):2091-2098.

    PAN Yishan. Disturbance response instability theory of rockburst in coal mine[J]. Journal of China Coal Society,2018,43(8):2091-2098.

    [3] 齐庆新,李一哲,赵善坤,等. 我国煤矿冲击地压发展70年:理论与技术体系的建立与思考[J]. 煤炭科学技术,2019,47(9):1-40.

    QI Qingxin,LI Yizhe,ZHAO Shankun,et al. Seventy years development of coal mine rockburst in China:establishment and consideration of theory and technology system[J]. Coal Science and Technology,2019,47(9):1-40.

    [4] 齐庆新,潘一山,李海涛,等. 煤矿深部开采煤岩动力灾害防控理论基础与关键技术[J]. 煤炭学报,2020,45(5):1567-1584.

    QI Qingxin,PAN Yishan,LI Haitao,et al. Theoretical basis and key technology of prevention and control of coal-rock dynamic disasters in deep coal mining[J]. Journal of China Coal Society,2020,45(5):1567-1584.

    [5] 王超,孔令海,王光民,等. 增量荷载作用下沿空工作面冲击地压防治研究[J]. 煤炭工程,2023,55(12):108-113.

    WANG Chao,KONG Linghai,WANG Guangmin,et al. Rock burst control of gob-side working face under incremental load[J]. Coal Engineering,2023,55(12):108-113.

    [6] 谭云亮,郭伟耀,辛恒奇,等. 煤矿深部开采冲击地压监测解危关键技术研究[J]. 煤炭学报,2019,44(1):160-172.

    TAN Yunliang,GUO Weiyao,XIN Hengqi,et al. Key technology of rock burst monitoring and control in deep coal mining[J]. Journal of China Coal Society,2019,44(1):160-172.

    [7] 门鸿,王晓军,李鹏,等. 特厚煤层综放临空巷道冲击地压综合防治技术应用[J]. 煤炭技术,2024,43(4):161-165.

    MEN Hong,WANG Xiaojun,LI Peng,et al. Application of comprehensive control technology of rock burst in extra thick coal seam caving goaf roadway[J]. Coal Technology,2024,43(4):161-165.

    [8] 刘畅,张宇,宋洁,等. 褶曲构造带临空巷道围岩应力演化及冲击地压防治技术[J]. 煤矿安全,2023,54(2):100-106.

    LIU Chang,ZHANG Yu,SONG Jie,et al. Stress evolution of surrounding rock and rock burst prevention technology of gob-side roadway in folded structural belt[J]. Safety in Coal Mines,2023,54(2):100-106.

    [9] 陈星,冯美华,尚楠,等. 厚硬顶板宽煤柱临空巷道冲击地压防治技术研究[J]. 煤炭工程,2022,54(1):84-88.

    CHEN Xing,FENG Meihua,SHANG Nan,et al. Rock burst control technology for gob-side roadway with thick and hard roof and wide coal pillar[J]. Coal Engineering,2022,54(1):84-88.

    [10] 唐杰兵,鞠文君,陈法兵. 动静载下深井临空巷道冲击破坏分析及防治[J]. 工矿自动化,2021,47(11):88-94,134.

    TANG Jiebing,JU Wenjun,CHEN Fabing. Analysis and prevention of impact damage in deep goaf roadway under dynamic and static load[J]. Industry and Mine Automation,2021,47(11):88-94,134.

    [11] 王桂利,孙振于,孟祥贵,等. 特厚煤层临空巷道内错布置防冲研究与实践[J]. 煤炭技术,2021,40(11):46-49.

    WANG Guili,SUN Zhenyu,MENG Xianggui,et al. Practice and research on controlling of rock burst by gob-side roadway inner-misaligned of extra thick coal seam[J]. Coal Technology,2021,40(11):46-49.

    [12] 冯龙飞,窦林名,王皓,等. 综放大煤柱临空侧巷道密集区冲击地压机制研究[J]. 采矿与安全工程学报,2021,38(6):1100-1110,1121.

    FENG Longfei,DOU Linming,WANG Hao,et al. Mechanism of rockburst in dense roadway area near the goaf of fully-mechanized large pillars[J]. Journal of Mining & Safety Engineering,2021,38(6):1100-1110,1121.

    [13] 苏士杰. 综采过背斜构造临空巷道冲击地压防治技术研究[J]. 煤炭科学技术,2020,48(3):120-125.

    SU Shijie. Research on technology of preventing mine rock burst of roadways near gob when fully-mechanized over anticlinal structure[J]. Coal Science and Technology,2020,48(3):120-125.

    [14] 赵雷. 厚硬煤岩临空巷道动静载叠加型冲击地压治理实践[J]. 内蒙古煤炭经济,2020(3):163-165.

    ZHAO Lei. Practice of dynamic and static load superposition type impact ground pressure control in thick and hard coal rock roadway[J]. Inner Mongolia Coal Economy,2020(3):163-165.

    [15] 李康,陈建强,赵志鹏,等. 临空巷道冲击地压耦合致灾因素及时空演化过程研究[J]. 煤炭科学技术,2019,47(12):76-82.

    LI Kang,CHEN Jianqiang,ZHAO Zhipeng,et al. Study on disaster-causing factors and evolution process of rock burst in roadway near gob[J]. Coal Science and Technology,2019,47(12):76-82.

    [16] 何江,窦林名,王崧玮,等. 坚硬顶板诱发冲击矿压机理及类型研究[J]. 采矿与安全工程学报,2017,34(6):1122-1127.

    HE Jiang,DOU Linming,WANG Songwei,et al. Study on mechanism and types of hard roof inducing rock burst[J]. Journal of Mining & Safety Engineering,2017,34(6):1122-1127.

    [17] 卜庆为,辛亚军,王超,等. 交错巷道巷间围岩承载结构稳定性分析[J]. 煤炭学报,2018,43(7):1866-1877.

    BU Qingwei,XIN Yajun,WANG Chao,et al. Stability analysis on bearing structure in the surrounding rock between staggered roadways[J]. Journal of China Coal Society,2018,43(7):1866-1877.

    [18] 马宏源,潘俊锋,席国军,等. 坚硬顶板强冲击工作面多巷交叉区域防冲技术[J]. 工矿自动化,2022,48(4):121-127.

    MA Hongyuan,PAN Junfeng,XI Guojun,et al. Rock burst prevention technology in multi-roadway intersection area of hard roof strong impact working face[J]. Journal of Mine Automation,2022,48(4):121-127.

    [19] 潘俊锋,刘少虹,高家明,等. 深部巷道冲击地压动静载分源防治理论与技术[J]. 煤炭学报,2020,45(5):1607-1613.

    PAN Junfeng,LIU Shaohong,GAO Jiaming,et al. Prevention theory and technology of rock burst with distinguish dynamic and static load sources in deep mine roadway[J]. Journal of China Coal Society,2020,45(5):1607-1613.

    [20] 马文涛,潘俊锋,刘少虹,等. 煤层顶板深孔“钻−切−压”预裂防冲技术试验研究[J]. 工矿自动化,2020,46(1):7-12.

    MA Wentao,PAN Junfeng,LIU Shaohong,et al. Experimental research on "drilling-cutting-fracturing" pre-fracturing to prevent rock burst technology for deep hole of roof of coal seam[J]. Industry and Mine Automation,2020,46(1):7-12.

    [21] 孙刘伟,鞠文君,潘俊锋,等. 基于震波CT探测的宽煤柱冲击地压防控技术[J]. 煤炭学报,2019,44(2):377-383.

    SUN Liuwei,JU Wenjun,PAN Junfeng,et al. Rock burst prevention technology based on seismic CT detection in wide section coal pillar[J]. Journal of China Coal Society,2019,44(2):377-383.

  • 期刊类型引用(9)

    1. 郭临明. 多种物探方法在煤矿回采工作面防治中的应用. 能源与节能. 2025(04): 247-249 . 百度学术
    2. 吴正飞. 矿井音频电透视在煤矿顶板砂岩富水区透明化中的应用. 价值工程. 2024(23): 131-135 . 百度学术
    3. 杨少文,张平松,许时昂,吴海波,邱实,焦文杰. 矿井直流电法技术应用现状与展望. 工矿自动化. 2023(08): 20-29 . 本站查看
    4. 鲁晶津,王云宏,崔伟雄,王冰纯,段建华,南汉晨,杨伟. 矿井水害音频电透视法监测水槽物理模拟试验研究. 煤炭科学技术. 2023(S1): 265-274 . 百度学术
    5. 张浩楠. 煤矿超宽工作面顶板富水性探测技术. 中国新技术新产品. 2022(08): 107-110 . 百度学术
    6. 张国恩,解振华,史洪恺. 音频电穿透技术在探查工作面顶板富水性的应用. 煤矿安全. 2021(05): 82-86 . 百度学术
    7. 王云龙. 顶板音频电透视三维可视化应用. 中国新技术新产品. 2021(14): 131-133 . 百度学术
    8. 李宇腾,代凤强,吴正飞,赵广军. 综合电法勘探技术在待采工作面顶板富水性评价中的应用. 煤炭技术. 2020(06): 57-59 . 百度学术
    9. 马良,郭瑞. 准格尔煤田不连沟矿井构造特征及其对煤矿生产的影响. 煤田地质与勘探. 2020(03): 35-44+50 . 百度学术

    其他类型引用(4)

图(11)  /  表(2)
计量
  • 文章访问数:  274
  • HTML全文浏览量:  12
  • PDF下载量:  24
  • 被引次数: 13
出版历程
  • 收稿日期:  2024-11-14
  • 修回日期:  2024-12-17
  • 网络出版日期:  2025-01-02
  • 刊出日期:  2024-12-24

目录

    /

    返回文章
    返回