基于连续域束缚态的太赫兹超表面甲烷传感器设计

刘海, 王麒尧, 高鹏, 王馨艳, 冯星宇, 崔鸿忠, 高鹏飞

刘海,王麒尧,高鹏,等. 基于连续域束缚态的太赫兹超表面甲烷传感器设计[J]. 工矿自动化,2025,51(2):48-56. DOI: 10.13272/j.issn.1671-251x.18220
引用本文: 刘海,王麒尧,高鹏,等. 基于连续域束缚态的太赫兹超表面甲烷传感器设计[J]. 工矿自动化,2025,51(2):48-56. DOI: 10.13272/j.issn.1671-251x.18220
LIU Hai, WANG Qiyao, GAO Peng, et al. Design of terahertz metasurface methane sensor based on bound states in the continuum[J]. Journal of Mine Automation,2025,51(2):48-56. DOI: 10.13272/j.issn.1671-251x.18220
Citation: LIU Hai, WANG Qiyao, GAO Peng, et al. Design of terahertz metasurface methane sensor based on bound states in the continuum[J]. Journal of Mine Automation,2025,51(2):48-56. DOI: 10.13272/j.issn.1671-251x.18220

基于连续域束缚态的太赫兹超表面甲烷传感器设计

基金项目: 国家重点研发计划项目(2021YFC2902701);国家自然科学基金项目(51874301)。
详细信息
    作者简介:

    刘海(1983—),男,湖北仙桃人,教授,博士,博士研究生导师,主要研究方向为硅基集成光电器件、超表面器件、光学传感器等,E-mail:lhai_hust@hotmail.com

  • 中图分类号: TD712

Design of terahertz metasurface methane sensor based on bound states in the continuum

  • 摘要:

    相较于传统矿用甲烷传感器,超表面甲烷传感器在灵敏度、稳定性等方面具有较显著的优势,能够更好地满足矿井生产实际需要。针对现有金属太赫兹超表面传感器对折射率的灵敏度相对较低的问题,设计了一种基于连续域束缚态的太赫兹超表面甲烷传感器。超表面结构为金属−介质−金属3层结构,其中金属材料为金,介质材料为聚酰亚胺,上层金属结构为圆环,通过调节左侧开口大小改变结构的对称性,从而引起准连续域束缚态(QBIC)。分析结果表明,左侧开口间距为5 μm时调制深度最大,为95.69%。在超表面结构上覆盖1层甲烷气敏膜材料(cryptophane-A),得到甲烷传感器。选取5种体积分数的甲烷和5种环境折射率验证甲烷传感器检测性能,结果表明:金属太赫兹超表面传感器对折射率和甲烷体积分数的灵敏度分别为949 GHz/RIU和4.4 GHz/%,且折射率和甲烷体积分数与QBIC谐振峰的变化呈较好的线性关系。设计了一种方环金属超表面甲烷传感器,将其与圆环结构进行对比,发现圆环结构在Q因子、调制深度和灵敏度等方面均优异于方环结构。

    Abstract:

    Compared to traditional methane sensors used in mines, the metasurface methane sensor has significant advantages in sensitivity, stability, and other aspects, making it better suited to meet the practical needs of mine production. To address the issue of relatively low sensitivity to refractive index in existing metal terahertz metasurface sensors, a terahertz metasurface methane sensor based on bound states in the continuum was designed. The metasurface structure consisted of a three-layer configuration: metal dielectric metal (MDM), where the metal material was gold, and the dielectric material was polyimide. The upper metal structure was a circle, and by adjusting the size of the opening on the left side, the symmetry of the structure could be altered, which in turn induced quasi bound states in the continuum (QBIC). The analysis results showed that when the left-side opening gap was 5 μm, the modulation depth was maximal at 95.69%. A methane-sensitive membrane material (cryptophane-A) was then applied to the metasurface structure to form the methane sensor. Five different methane volume fractions and five environmental refractive indices were selected to validate the methane sensor's detection performance. The results showed that the sensitivity of the metal terahertz metasurface sensor to refractive index and methane volume fraction were 949 GHz/RIU and 4.4 GHz/%, respectively, and both the refractive index and methane volume fraction exhibited a good linear relationship with the QBIC resonance peak shift. A square ring metal metasurface methane sensor was designed and compared with the circular ring structure. It was found that the circular ring structure outperformed the square ring structure in terms of Q factor, modulation depth, and sensitivity.

  • 图  1   太赫兹超表面结构

    Figure  1.   Terahertz metasurface structure

    图  2   对称结构相关物理特性

    Figure  2.   Physical properties related to symmetrical structure

    图  3   非对称结构相关物理特性

    Figure  3.   Physical properties related to asymmetric structure

    图  4   不同金层厚度下的反射光谱

    Figure  4.   Reflection spectra at different gold layer thicknesses

    图  5   捕捉甲烷分子前后的cryptophane-A结构[21]

    Figure  5.   Cryptophane-A structure before and after capturing methane molecules[21]

    图  6   不同体积分数下甲烷传感器性能仿真结果

    Figure  6.   Simulation results of methane sensor performance at different volume fractions

    图  7   不同环境折射率下甲烷传感器性能仿真结果

    Figure  7.   Simulation results of methane sensor performance at different environmental refractive indices

    图  8   方环结构的参数和相关物理特性

    Figure  8.   Parameters and related physical properties of square ring structure

    图  9   方环结构传感器的性能仿真结果

    Figure  9.   Simulation results of square ring structure sensor performance

    表  1   几何参数变化对Q,MD的影响

    Table  1   Influence of geometric parameter changes on Q and MD

    g1/μm R2/μm Q MD
    1 6.8 18.53 58.49
    7.0 20.18 61.21
    7.2 18.89 63.34
    2 6.8 41.76 96.41
    7.0 42.43 95.69
    7.2 41.30 96.24
    3 6.8 45.74 58.10
    7.0 44.45 56.12
    7.2 41.69 53.84
    下载: 导出CSV

    表  2   金层厚度变化对Q,MD的影响

    Table  2   Influence of gold layer thickness changes on Q and MD

    t1/μm Q MD t1/μm Q MD
    0.02 38.69 92.29 1.2 46.43 86.62
    0.2 42.43 95.69 1.4 47.73 65.65
    0.4 41.77 94.02 1.6 48.21 84.47
    0.6 44.68 91.88 1.8 48.17 83.90
    0.8 43.36 89.35 2.0 48.35 83.38
    1.0 45.27 88.18
    下载: 导出CSV

    表  3   圆环和方环结构传感器性能对比

    Table  3   Comparison of performance between circular and square ring structure sensors

    形状 性能参数 参数值
    圆环 Q因子 42.43
    调制深度/% 95.6
    折射率灵敏度/(GHz·RIU−1) 949
    甲烷体积分数灵敏度/(GHz·%−1) 4.4
    方环 Q因子 41.45
    调制深度/% 90.01
    折射率灵敏度/(GHz·RIU−1) 858
    甲烷体积分数灵敏度/(GHz·%−1) 4.16
    下载: 导出CSV

    表  4   太赫兹超表面传感器折射率灵敏度对比

    Table  4   Comparison of refractive index sensitivities of terahertz metasurface sensors

    文献出处 原理类别 折射率灵敏度/(GHz·RIU−1)
    文献[16] QBIC 420
    文献[17] QBIC 674
    文献[18] QBIC 775.7
    文献[24] EIT 133.8
    本文 QBIC 949
    下载: 导出CSV
  • [1] 张超林,王恩元,王奕博,等. 近20年我国煤与瓦斯突出事故时空分布及防控建议[J]. 煤田地质与勘探,2021,49(4):134-141. DOI: 10.3969/j.issn.1001-1986.2021.04.016

    ZHANG Chaolin,WANG Enyuan,WANG Yibo,et al. Spatial-temporal distribution of outburst accidents from 2001 to 2020 in China and suggestions for prevention and control[J]. Coal Geology & Exploration,2021,49(4):134-141. DOI: 10.3969/j.issn.1001-1986.2021.04.016

    [2] 国家安全生产监督管理总局. 煤矿安全规程[M]. 北京:煤炭工业出版社,2022.

    State Administration of Work Safety. Coal mine safety regulations[M]. Beijing:Coal Industry Press,2022.

    [3] 马啸,卫琛浩,景欣瑞,等. 矿井瓦斯传感器研究现状及发展趋势[J]. 煤炭与化工,2023,46(3):99-102,105.

    MA Xiao,WEI Chenhao,JING Xinrui,et al. Research status and development trend of mine gas sensor[J]. Coal and Chemical Industry,2023,46(3):99-102,105.

    [4] 刘文鹏,陈向东,吴宇尘. 基于脉冲供电的催化燃烧式气体传感系统[J]. 信息技术,2020,44(8):1-6,11.

    LIU Wenpeng,CHEN Xiangdong,WU Yuchen. Catalytic combustion gas sensing system based on pulse power[J]. Information Technology,2020,44(8):1-6,11.

    [5]

    CHEN Yang,ZHANG Wenshuang,LUO Na,et al. Defective ZnO nanoflowers decorated by ultra-fine Pd clusters for low-concentration CH4 sensing:controllable preparation and sensing mechanism analysis[J]. Coatings,2022,12(5). DOI: 10.3390/coatings12050677.

    [6] 陈享享,刘天豪,欧阳云飞,等. 基于金属氧化物半导体的瓦斯气体传感器研究现状及进展[J]. 金属矿山,2023(11):34-44.

    CHEN Xiangxiang,LIU Tianhao,OUYANG Yunfei,et al. Research status and progress of coal mine gas sensor based on metal oxide semiconductor[J]. Metal Mine,2023(11):34-44.

    [7] 梁运涛,陈成锋,田富超,等. 甲烷气体检测技术及其在煤矿中的应用[J]. 煤炭科学技术,2021,49(4):40-48.

    LIANG Yuntao,CHEN Chengfeng,TIAN Fuchao,et al. Methane gas detection technology and its application in coal mines[J]. Coal Science and Technology,2021,49(4):40-48.

    [8]

    FENG Jixin,WANG Xianghui,SHI Weinan,et al. Asymmetric dumbbell dimers simultaneously supporting quasi-bound states in continuum and anapole modes for terahertz biosensing[J]. Nanophotonics,2024,13(21):4007-4017. DOI: 10.1515/nanoph-2024-0254

    [9]

    LYU Qihao,QIN Xu,HU Mingzhe,et al. Metatronics-inspired high-selectivity metasurface filter[J]. Nanophotonics,2024,13(16):2995-3003. DOI: 10.1515/nanoph-2024-0123

    [10]

    QARONY W,MAYET A S,PONIZOVSKAYA-DEVINE E,et al. Achieving higher photoabsorption than group III-V semiconductors in ultrafast thin silicon photodetectors with integrated photon-trapping surface structures[J]. Advanced Photonics Nexus,2023,2(5). DOI: 10.1117/1.APN.2.5.056001.

    [11]

    LI Liu,WANG Shuai,ZHAO Feng,et al. Single-shot deterministic complex amplitude imaging with a single-layer metalens[J]. Science Advances,2024,10(1). DOI: 10.1126/sciadv.adl0501.

    [12]

    LIU Zeqian,WANG Bin,WANG Shang,et al. Mid-infrared high performance dual-Fano resonances based on all-dielectric metasurface for refractive index and gas sensing[J]. Optics & Laser Technology,2024,177. DOI: 10.1016/j.optlastec.2024.111140.

    [13]

    DANILA O,GROSS B M. Towards highly efficient nitrogen dioxide gas sensors in humid and wet environments using triggerable-polymer metasurfaces[J]. Polymers,2023,15(3). DOI: 10.3390/polym15030545.

    [14]

    MARINICA D C,BORISOV A G,SHABANOV S V. Bound states in the continuum in photonics[J]. Physical Review Letters,2008,100(18). DOI: 10.1103/PhysRevLett.100.183902.

    [15] 姚建铨,李继涛,张雅婷,等. 周期光学系统中的连续域束缚态[J]. 中国光学(中英文),2023,16(1):1-23. DOI: 10.37188/CO.2022-0022

    YAO Jianquan,LI Jitao,ZHANG Yating,et al. Bound states in continuum in periodic optical systems[J]. Chinese Optics,2023,16(1):1-23. DOI: 10.37188/CO.2022-0022

    [16]

    LIU Bingwei,PENG Yan,JIN Zuanming,et al. Terahertz ultrasensitive biosensor based on wide-area and intense light-matter interaction supported by QBIC[J]. Chemical Engineering Journal,2023,462. DOI: 10.1016/j.cej.2023.142347.

    [17]

    WANG Ride,XU Lei,HUANG Lujun,et al. Ultrasensitive terahertz biodetection enabled by quasi-BIC-based metasensors[J]. Small,2023,19(35). DOI: 10.1002/smll.202301165.

    [18] 刘海,周彤,陈聪,等. 基于Fano共振的全介质型超表面甲烷传感器设计[J]. 工矿自动化,2023,49(9):106-114.

    LIU Hai,ZHOU Tong,CHEN Cong,et al. Design of all dielectric metasurface methane sensor based on Fano resonance[J]. Journal of Mine Automation,2023,49(9):106-114.

    [19]

    CHEN Xu,FAN Wenhui,JIANG Xiaoqiang,et al. High-Q toroidal dipole metasurfaces driven by bound states in the continuum for ultrasensitive terahertz sensing[J]. Journal of Lightwave Technology,2022,40(7):2181-2190. DOI: 10.1109/JLT.2021.3132727

    [20]

    LEI Pengliang,NIE Guozheng,LI Huilin,et al. Multifunctional terahertz device based on plasmon-induced transparency[J]. Physica Scripta,2024,99(7). DOI: 10.1088/1402-4896/ad5120.

    [21] 王帅. 基于SPR的光纤甲烷气体传感研究[D]. 西安:西安石油大学,2021.

    WANG Shuai. Research on fiber optic methane gas sensing based on SPR[D]. Xi'an:Xi'an Shiyou University,2021.

    [22] 郭岩宝,刘承诚,王德国,等. 甲烷传感器气敏材料的研究现状与进展[J]. 科学通报,2019,64(14):1456-1470. DOI: 10.1360/N972018-00698

    GUO Yanbao,LIU Chengcheng,WANG Deguo,et al. Advances in the development of methane sensors with gas-sensing materials[J]. Chinese Science Bulletin,2019,64(14):1456-1470. DOI: 10.1360/N972018-00698

    [23]

    YANG Jianchun,ZHOU Lang,CHE Xin,et al. Photonic crystal fiber methane sensor based on modal interference with an ultraviolet curable fluoro-siloxane nano-film incorporating cryptophane A[J]. Sensors and Actuators B:Chemical,2016,235:717-722. DOI: 10.1016/j.snb.2016.05.125

    [24]

    CHEN Yuxuan,SUN Yongzheng,ZHOU Weijun,et al. Conductively coupled terahertz metamaterials with dual functions of electromagnetically induced transparent and Fano effects for sensing applications[J]. Physica Scripta,2024,99(10). DOI: 10.1088/1402-4896/ad7338.

    [25]

    CHEN Yiqin,BI Kaixi,WANG Qianjin,et al. Rapid focused ion beam milling based fabrication of plasmonic nanoparticles and assemblies via "sketch and peel" strategy[J]. ACS Nano,2016,10(12):11228-11236. DOI: 10.1021/acsnano.6b06290

    [26]

    RUSSELL B J,MENG Jiajun,CROZIER K B. Mid-infrared gas classification using a bound state in the continuum metasurface and machine learning[J]. IEEE Sensors Journal,2023,23(19):22389-22398. DOI: 10.1109/JSEN.2023.3305598

图(9)  /  表(4)
计量
  • 文章访问数:  66
  • HTML全文浏览量:  6
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-05
  • 修回日期:  2025-02-19
  • 网络出版日期:  2025-03-10
  • 刊出日期:  2025-02-14

目录

    /

    返回文章
    返回