无线电波发射功率防爆要求与检测方法

孙继平, 彭铭

孙继平,彭铭. 无线电波发射功率防爆要求与检测方法[J]. 工矿自动化,2024,50(6):1-5, 22. DOI: 10.13272/j.issn.1671-251x.18203
引用本文: 孙继平,彭铭. 无线电波发射功率防爆要求与检测方法[J]. 工矿自动化,2024,50(6):1-5, 22. DOI: 10.13272/j.issn.1671-251x.18203
SUN Jiping, PENG Ming. Explosion proof requirements and detecting methods for radio wave transmission power[J]. Journal of Mine Automation,2024,50(6):1-5, 22. DOI: 10.13272/j.issn.1671-251x.18203
Citation: SUN Jiping, PENG Ming. Explosion proof requirements and detecting methods for radio wave transmission power[J]. Journal of Mine Automation,2024,50(6):1-5, 22. DOI: 10.13272/j.issn.1671-251x.18203

无线电波发射功率防爆要求与检测方法

基金项目: 国家自然科学基金面上项目(52074305);国家重点研发计划项目(2016YFC0801800)。
详细信息
    作者简介:

    孙继平(1958—),男,山西翼城人,教授,博士,博士研究生导师,中国矿业大学(北京)原副校长;获国家科技进步奖和技术发明奖二等奖4项(第1完成人3项);作为第1完成人获省部级科技进步特等奖和一等奖9项;作为第1完成人主持制定中华人民共和国煤炭行业、安全生产行业和能源行业标准51项;作为第1发明人获国家授权发明专利130余件;主持制定《煤矿安全规程》第十一章“监控与通信”;被SCI和EI检索的第1作者或独立完成论文100余篇;作为第1作者或独立完成著作12部;作为国务院煤矿事故调查专家组组长参加了10起煤矿特别重大事故调查工作;E-mail:sjp@cumtb.edu.cn

  • 中图分类号: TD655

Explosion proof requirements and detecting methods for radio wave transmission power

  • 摘要: 现行国家标准GB/T 3836.1—2021《爆炸性环境 第1部分:设备 通用要求》和国际标准IEC 60079-0:2017《Explosive atmospheres-Part 0:Equipment-General requirements》规定无线电发射器的阈功率为无线电发射器的有效输出功率与天线增益的乘积。在无线电波防爆安全发射功率阈值一定的条件下,天线增益越大,无线电发射器的有效输出功率就越小,这将限制通过增大天线增益,提高无线传输距离。因此,有必要对国家标准GB/T 3836.1—2021和国际标准IEC 60079-0:2017中规定的阈功率的正确性进行研究,提出合理的无线电波发射功率防爆要求与检测方法。提出了无线电波防爆安全发射功率与天线增益无关,国家标准GB/T 3836.1—2021和国际标准IEC 60079-0:2017规定的无线电发射器的阈功率是错误的。提出了煤矿井下无线电波防爆安全发射功率阈值应大于16 W,且与天线增益无关;国家标准GB/T 3836.1—2021和国际标准IEC 60079-0:2017规定阈功率不得大于6 W,且与天线增益相关,是错误的。提出了无线电波防爆安全性能检测方法——检测无线电发射器输出功率,这既可保证通过检测的防爆无线电设备的防爆安全,又简化了检测方法,更提高了防爆无线电设备的无线电波发射功率,解除了对天线增益的限制,将大大提高煤矿井下防爆无线电设备的无线传输距离。
    Abstract: The current national standard GB/T 3836.1-2021 Explosive atmospheres-Part 1: Equipment-General requirements and the international standard IEC 60079-0:2017 Explosive atmospheres-Part 0: Equipment-General requirements stipulate that the threshold power of a radio transmitter is the product of the effective output power of the radio transmitter and the antenna gain. Under the condition of a certain threshold for the safe transmission power of radio wave explosion-proof, the larger the antenna gain, the smaller the effective output power of the radio transmitter. This will limit the improvement of wireless transmission distance by increasing the antenna gain. Therefore, it is necessary to study the correctness of the threshold power specified in the national standard GB/T 3836.1-2021 and the international standard IEC 60079-0:2017, and propose reasonable explosion-proof requirements and detection methods for radio wave transmission power. It has been proposed that the safe transmission power of radio waves is independent of antenna gain, and the threshold power of radio transmitters specified in the national standard GB/T 3836.1-2021 and the international standard IEC 60079-0:2017 is incorrect. It is proposed that the threshold for the safe transmission power of underground wireless radio waves in coal mines should be greater than 16 W and independent of antenna gain. The national standard GB/T 3836.1-2021 and the international standard IEC 60079-0:2017 stipulate that the threshold power shall not exceed 6 W, which is incorrect. A method for detecting the explosion-proof safety performance of wireless radio waves has been proposed. The method detects the output power of wireless transmitters. This not only ensures the explosion-proof safety of the detected wireless equipment, but also simplifies the detection method. The method improves the wireless radio wave transmission power of the wireless equipment, removes the limitation on antenna gain, and greatly improves the wireless transmission distance of wireless explosion-proof equipment in coal mines.
  • 图  1   无线电发射器与外置天线连接

    Figure  1.   Connection of the radio transmitter and external antenna

  • [1] 孙继平. 煤矿用5G通信系统标准研究制定[J]. 工矿自动化,2023,49(8):1-8.

    SUN Jiping. Research and development of 5G communication system standards for coal mines[J]. Journal of Mine Automation,2023,49(8):1-8.

    [2] 孙继平. 煤矿智能化与矿用5G和网络硬切片技术[J]. 工矿自动化,2021,47(8):1-6.

    SUN Jiping. Coal mine intelligence,mine 5G and network hard slicing technology[J]. Industry and Mine Automation,2021,47(8):1-6.

    [3] 孙继平. 煤矿智能化与矿用5G[J]. 工矿自动化,2020,46(8):1-7.

    SUN Jiping. Coal mine intelligence and mine-used 5G[J]. Industry and Mine Automation,2020,46(8):1-7.

    [4] 孙继平,陈晖升. 智慧矿山与5G和WiFi6[J]. 工矿自动化,2019,45(10):1-4.

    SUN Jiping,CHEN Huisheng. Smart mine with 5G and WiFi6[J]. Industry and Mine Automation,2019,45(10):1-4.

    [5] 孙继平. 煤矿机器人电气安全技术研究[J]. 煤炭科学技术,2019,47(4):1-6.

    SUN Jiping. Research on electrical safety technology of coal mine robot[J]. Coal Science and Technology,2019,47(4):1-6.

    [6] 丁序海,潘涛,彭铭,等. 煤矿井下无线电波对人体的影响[J]. 工矿自动化,2022,48(11):84-92,144.

    DING Xuhai,PAN Tao,PENG Ming,et al. Influence of underground radio wave on human body in coal mine[J]. Journal of Mine Automation,2022,48(11):84-92,144.

    [7] GB/T 3836.1—2021 爆炸性环境 第1部分:设备 通用要求[S] .

    GB/T 3836.1-2021 Explosive atmospheres-Part 1:Equipment-General requirements[S].

    [8] 邵水才,郭旭东,彭铭,等. 煤矿井下无线传输分析方法[J]. 工矿自动化,2022,48(10):123-128.

    SHAO Shuicai,GUO Xudong,PENG Ming,et al. Coal mine underground wireless transmission analysis method[J]. Journal of Mine Automation,2022,48(10):123-128.

    [9] 张高敏,刘毅,彭铭. FDTD矿井无线传输特性分析方法研究[J]. 煤炭科学技术,2022,50(11):202-212.

    ZHANG Gaomin,LIU Yi,PENG Ming. Resarch on the FDTD analysis method of wireless transmission characteristics in underground mine[J]. Coal Science and Technology,2022,50(11):202-212.

    [10] 张高敏,刘毅,彭铭. UWR−FDTD矿井电磁波数值分析方法[J]. 煤炭学报,2022,47(11):4157-4166.

    ZHANG Gaomin,LIU Yi,PENG Ming. Numerical analysis method of the electromagnetic fields in coal mine roadway using UWR-FDTD[J]. Journal of China Coal Society,2022,47(11):4157-4166.

    [11] 梁伟锋,孙继平,彭铭,等. 煤矿井下无线电波防爆安全功率阈值研究[J]. 工矿自动化,2022,48(12):123-128,163.

    LIANG Weifeng,SUN Jiping,PENG Ming,et al. Research on safe power threshold of radio wave explosion-proof in coal mine[J]. Journal of Mine Automation,2022,48(12):123-128,163.

    [12] 潘涛,彭铭,徐会军,等. 煤矿井下无线电波防爆安全阈值及测试方法[J]. 智能矿山,2023,4(1):78-82.

    PAN Tao,PENG Ming,XU Huijun,et al. Safety thresholds and test methods for radio wave explosion protection in underground coal mines[J]. Journal of Intelligent Mine,2023,4(1):78-82.

    [13]

    IEC 60079-0:2017 Explosive atmospheres-Part 0:Equipment-General requirements[S] .

    [14]

    CLC/TR 50427:2004 Assessment of inadvertent ignition of flammable atmospheres by radio-frequency radiation-Guide[S] .

    [15] 孙继平,彭铭,潘涛,等. 无线电波防爆安全阈值研究[J]. 工矿自动化,2023,49(2):1-5.

    SUN Jiping,PENG Ming,PAN Tao,et al. Research on the safety threshold of radio wave explosion-proof[J]. Journal of Mine Automation,2023,49(2):1-5.

    [16] 孙继平,彭铭. 矿井无线电波防爆安全发射功率研究[J]. 工矿自动化,2024,50(3):1-5.

    SUN Jiping,PENG Ming. Research on the safe transmission power of mine radio wave explosion prevention[J]. Journal of Mine Automation,2024,50(3):1-5.

    [17] 张勇. 煤矿井下无线射频近场谐振耦合防爆电磁能仿真分析[J]. 煤矿安全,2022,53(8):134-138.

    ZHANG Yong. Simulation analysis of explosion-proof electromagnetic energy coupled with radio frequency near field resonance in underground coal mine[J]. Safety in Coal Mines,2022,53(8):134-138.

    [18] 王国法,庞义辉,任怀伟,等. 智慧矿山系统工程及关键技术研究与实践[J]. 煤炭学报,2024,49(1):181-202.

    WANG Guofa,PANG Yihui,REN Huaiwei,et al. System engineering and key technologies research and practice of smart mine[J]. Journal of China Coal Society,2024,49(1):181-202.

    [19] 张勇,孟积渐,郭子文. 5G射频电磁波瓦斯引燃机理与功率安全阈值研究[J]. 智能矿山,2024,5(3):53-58.

    ZHANG Yong,MENG Jijian,GUO Ziwen. 5G RF electromagnetic wave gas ignition mechanism and power safety threshold research[J]. Journal of Intelligent Mine,2024,5(3):53-58.

    [20]

    MENG Jijian,GUO Ziwen,ZHANG Yong,et al. Analysis of electromagnetic wave ignition mechanism and calculation of power threshold in underground coal mine[J]. Journal of Electromagnetic Waves and Applications,2024,38(2):234-249. DOI: 10.1080/09205071.2023.2290506

    [21] 郭波超,田子建,侯明硕,等. 煤矿井下爆炸性环境下电磁波热效应的安全性研究[J]. 工矿自动化,2024,50(3):108-113.

    GUO Bochao,TIAN Zijian,HOU Mingshuo,et al. Research on safety of electromagnetic wave thermal effect in explosive environment of underground coal mine[J]. Journal of Mine Automation,2024,50(3):108-113.

    [22] 董红涛,田子建,侯明硕,等. 金属振子结构在矿井5G辐射场中的安全功率分析[J]. 工矿自动化,2023,49(12):108-113.

    DONG Hongtao,TIAN Zijian,HOU Mingshuo,et al. Safety power analysis of metal oscillator structure in mine 5G radiation field[J]. Journal of Mine Automation,2023,49(12):108-113.

    [23] GB/T 3836.4—2021 爆炸性环境 第4部分:由本质安全型“i”保护的设备[S].

    GB/T 3836.4-2021 Explosive atmospheres-Part 4:Equipment protection by intrinsic safety "i"[S].

    [24] 约翰·克劳斯. 天线[M]. 3版. 北京:电子工业出版社,2017.

    KRAUS J D. Antennas:for all applications[M]. 3th ed. Beijing:Publishing House of Electronics Industry,2017.

  • 期刊类型引用(14)

    1. 郝志会,孙玉博,郑义. 高噪声场景下矿井通风机滚动轴承故障诊断. 煤炭工程. 2024(12): 161-168 . 百度学术
    2. 秦福星,杨元章. 基于组合式BP的级差空压机故障诊断. 船电技术. 2023(05): 32-34 . 百度学术
    3. 陈家璘,周正,冯伟东,贺易,李静茹,赵世文. 一种无线传感器网络节点的故障检测算法. 计算技术与自动化. 2021(01): 38-42 . 百度学术
    4. 经海翔,黄友锐,徐善永,唐超礼. 基于数字孪生和概率神经网络的矿用通风机预测性故障诊断研究. 工矿自动化. 2021(11): 53-60 . 本站查看
    5. 陈耀辉,马星河. 一种改进CS-BP神经网络算法的矿用变压器故障诊断方法. 煤矿机电. 2021(06): 7-10 . 百度学术
    6. 冀汶莉,郗刘涛,王斌. 面向不平衡数据集的煤矿监测系统异常数据识别方法. 工矿自动化. 2020(01): 18-25 . 本站查看
    7. 窦国贤,高杨. 一种改进的电网信息系统自动化故障融合监测技术. 计算技术与自动化. 2020(01): 34-38 . 百度学术
    8. 窦国贤,高杨. 基于小波分析方法检测电网信息故障的研究. 计算机测量与控制. 2020(09): 38-41+57 . 百度学术
    9. 王思. 基于多传感器的运动员训练信息融合分析系统设计. 计算技术与自动化. 2020(03): 140-146 . 百度学术
    10. 闫俊泉,李东明,孙学锋,徐才. 基于改进神经网络的电机轴承故障的诊断. 国外电子测量技术. 2019(01): 5-10 . 百度学术
    11. 赵见龙,张永超. 基于LabVIEW的矿井主通风机滚动轴承监测系统设计. 煤矿机械. 2019(07): 159-162 . 百度学术
    12. 顾闯. 煤炭企业工控网络安全防护与预测方法研究. 煤炭科学技术. 2019(11): 143-147 . 百度学术
    13. 覃缓贵. 矿用离心风机故障诊断在线监测系统设计. 煤炭技术. 2018(06): 234-236 . 百度学术
    14. 杨会. 基于螳螂眼算法无人矿车图像处理系统研究. 微型机与应用. 2017(17): 92-95 . 百度学术

    其他类型引用(18)

图(1)
计量
  • 文章访问数:  1160
  • HTML全文浏览量:  79
  • PDF下载量:  264
  • 被引次数: 32
出版历程
  • 收稿日期:  2024-06-04
  • 修回日期:  2024-06-07
  • 网络出版日期:  2024-06-18
  • 刊出日期:  2024-06-29

目录

    /

    返回文章
    返回