Research progress on insulation aging mechanism and condition evaluation technology of mining EPDM high-voltage cables
-
摘要: 绝缘被认为是电气设备中最薄弱的环节。煤矿特殊工况和电、热、机械应力等老化因子的共同作用,使矿用高压电缆的三元乙丙橡胶(EPDM)绝缘老化机理判定与状态评估存在很大的难度。针对煤矿用高压移动软电缆的EPDM绝缘,介绍了EPDM的基本性能和经受的老化因子类型。基于多老化因子作用下EPDM的理化性能、机械性能、电性能,分析了EPDM老化机理。综述了绝缘电阻、局部放电、介质损耗因数和温度等矿用高压电缆绝缘在线监测方法的基本原理和存在的问题。总结了矿用高压电缆绝缘状态评估方法研究现状,介绍了基于改进雷达图的多参量和基于介质损耗的单参量矿用高压电缆绝缘状态评估方法。为应对煤矿智能化发展,一方面矿用电气设备智能化需要在智能感知、智能控制方面开展研究,弥补状态感知环节和状态评估特征量缺失的问题;另一方面需要研究轻量化模型或算法,降低设备旁智能终端的计算复杂性、参数量和分析耗时,提高状态评估技术的可实施性,为实现智能分析和智能决策奠定基础。Abstract: Insulation is considered the weakest link in electrical equipment. The combined effects of special working conditions in coal mines and aging factors such as electrical, thermal, and mechanical stresses make it difficult to determine the aging mechanism and evaluate the condition of EPDM insulation for high-voltage cables used in mines. This paper introduces the basic performance and aging factor types of EPDM insulation for high-voltage mobile flexible cables used in coal mines. Based on the physical, chemical, mechanical, and electrical properties of EPDM under the influence of multiple aging factors, the aging mechanism of EPDM is proposed. This paper summarizes the basic principles and existing problems of online monitoring methods for insulation resistance, partial discharge, dielectric loss factor, and temperature of mining high-voltage cables. The paper summarizes the current research status of insulation status evaluation methods for mining high-voltage cables. The paper introduces the evaluation methods for insulation status of multi parameter based on improved radar map and single parameter based on dielectric loss mining high-voltage cables. To cope with the development of coal mine intelligence, on the one hand, it is suggested to do research on intelligent perception and control of mining electrical equipment to compensate for the lack of state perception and state evaluation feature quantities. On the other hand, it is necessary to study lightweight models or algorithms to reduce the computational complexity, parameter quantity, and analysis time of intelligent terminals near devices. It improves the feasibility of state evaluation technology, and lays the foundation for achieving intelligent analysis and decision-making.
-
0. 引言
煤自燃严重制约着我国煤矿安全生产发展,特别是以采空区、工作面及某些煤矿燃烧层等为主的部分区域的煤经过一次及以上的氧化形成氧化煤[1-3],自燃危险性更大。许多学者对氧化煤的自燃危险性进行了大量研究。文虎等[3]、邓军等[4-6]、张辛亥等[7]对原煤和二次氧化煤的气体浓度和相关自燃特性参数等开展了研究,发现二次氧化煤氧化性增强,自燃危险性就增大。秦跃平等[8]研究了三次升温对煤低温氧化特性的影响,结果表明随着升温次数增加,煤的氧化能力逐渐降低。
为了解决煤氧化自燃、复燃问题,许多学者采用各种材料进行了研究。由于惰性气体实用性好[9],成为了煤层火灾防治常用的防灭火材料之一。娄和壮等[10]利用程序升温试验和热重分析实验研究了煤对惰性气体的竞争吸附差异。Zhou Buzhuang等[11]利用电子自旋共振谱仪、红外光谱仪和气相色谱仪从宏观和微观方面研究了惰性气体对煤自燃的作用机理。苏楚涵[12]建立了基于模糊层次分析法和逼近理想解法的煤自燃预测模型,用于预测煤自燃的危险性,并根据危险性设计了通过煤壁钻孔方式向井下注入阻化剂或采用间歇注氮方式进行灭火。郭志国等[13]、Zhang Yi等[14]、马砺等[15]探究了不同浓度CO2对煤升温氧化的影响,实验结果表明随着CO2浓度升高,CO2对煤氧反应的抑制作用越强。邵昊等[16]研究了CO2和N2对煤自燃性能影响的对比,得出在通入CO2的情况下煤更不易自燃。方熙杨等[17]开展了惰性气体等温动态驱替不同粒径煤的O2实验,实验表明惰性气体驱替O2会出现阶段性变化,并且CO2,N2和He驱替O2与煤的粒径的不同存在差异。
综上可知,针对利用惰性气体降低煤氧化性来解决煤自燃、复燃的问题,现有研究大多是对煤低温氧化过程及煤复燃过程进行相关实验,对惰性气体降温后煤二次氧化的自燃特性涉及较少。基于此,笔者以焦煤为例,通过低温氧化实验,探究不同温度氧化的焦煤经过CO2冷却二次氧化的自燃特性,为煤矿采空区启封复采时的防灭火提供一定的依据。
1. 煤样制备及实验过程
1.1 煤样制备
将焦煤从煤矿井下密封包裹运回实验室,在真空条件下破碎,筛选出粒径为120~250 μm的焦煤,并用真空袋(每袋煤样40 g)抽真空保存,作为实验样品。实验焦煤的工业分析见表1。
表 1 焦煤工业分析Table 1. Industrial analysis of coking coal% 样品 水分 灰分 挥发分 固定碳含量 焦煤 0.60 7.88 21.67 69.85 从表1可看出,实验选用的焦煤水分含量较少,灰分和挥发分含量相对较多,固定碳含量占总量的70%左右。该焦煤灰分为低灰−中灰。
1.2 实验过程
为了探究不同预氧化程度焦煤在CO2冷却后二次氧化的自燃特性,采用GC−4000A程序升温装置(图1)对焦煤进行预氧化(预氧化温度设为70,110,150 ℃),并对分别通入CO2气体和干空气冷却至30 ℃后的焦煤二次氧化过程中的耗氧速率、CO产生率、CO2浓度和表观活化能进行分析。实验步骤如下:
1) 将制备好的40 g焦煤置于煤样罐中,在流量为80 mL/min的干空气中以0.8 ℃/min的升温速率将焦煤升温至目标预氧化温度70,110, 150 ℃(所选取温度以临界温度和干裂温度为参考),选取 70,110,150 ℃三组预氧化焦煤进行实验。
2) 将预氧化焦煤通入CO2冷却降温至30 ℃。二次氧化时,将预氧化焦煤在30 ℃恒温15 min后,仍以气体流量为80 mL/min、升温速率为0.8 ℃/min将预氧化焦煤程序升温至200 ℃,升温过程中每升高10 ℃取1次气体进行色谱分析,以干空气降温作为对照组。
2. 实验结果与分析
2.1 耗氧速率变化规律
耗氧速率是指一定体积的煤样在单位时间内消耗氧气的摩尔数,可以间接表示煤氧化性的强弱,从而反映煤的自燃性。根据煤样罐进出口O2体积分数的变化,耗氧速率计算公式如下[18]:
$$ {V_{{{\rm{O}}_2}}}\left( {{t}} \right) = \frac{{Q\varphi _{{{\rm{O}}_2}}^0}}{{SL}}\ln \frac{{\varphi _{{{\rm{O}}_2}}^1}}{{\varphi _{{{\rm{O}}_2}}^2}} $$ (1) 式中:
$ {V}_{{{\rm{O}}}_{2}}\left(t\right) $ 为温度为t时煤的耗氧速率,mol/(cm3·s);Q为供气量,实验供气量为80 mL/min;${\varphi }_{{\mathrm{O}}_{2}}^{0}\mathrm{}$ 为干空气条件下的O2体积分数,${\varphi }_{{\mathrm{O}}_{2}}^{0} $ =21%; S为煤样罐横截面积,cm2;L为煤样罐中煤的高度,cm;$ {\varphi }_{{\mathrm{O}}_{2}}^{1},{\varphi }_{{\mathrm{O}}_{2}}^{2} $ 分别为煤样罐进气口、出气口处O2体积分数,%。将相关实验测得的数据代入式(1),得到不同冷却条件下耗氧速率随温度变化的规律,如图2所示。CO2体积分数随温度变化的规律如图3所示。
由图2(a)可看出,CO2冷却条件下,二次氧化反应在70 ℃及之前,耗氧速率排序为110 ℃氧化焦煤>70 ℃氧化焦煤>150 ℃氧化焦煤; 80 ℃之后,耗氧速率排序变为70 ℃氧化焦煤>110 ℃氧化焦煤>150 ℃氧化焦煤。结合图3,经CO2冷却的焦煤二次氧化前期产生和吸附的CO2量远大于干空气冷却焦煤所产生的CO2,因此,反应前期可以忽略焦煤氧化产生的CO2对其氧化反应的影响。根据气体吸附理论[19],煤对CO2气体吸附能力大于O2。经过CO2冷却后,大量CO2附着在煤表面及孔隙中,阻碍煤与空气中的O2结合,反应消耗的O2减少。70 ℃氧化焦煤和110 ℃氧化焦煤反应开始时吸附的CO2量相差较小,并且焦煤经过预氧化后,其分子表面活性基团随着预氧化温度升高而增多,在CO2吸附量相差较小的情况下,更多活性基团与O2结合发生反应,因此,耗氧速率排序为110 ℃氧化焦煤>70 ℃氧化焦煤;150 ℃氧化焦煤吸附的CO2量远大于70 ℃氧化焦煤和110 ℃氧化焦煤的吸附量,反应过程中更多CO2阻止活性基团与O2接触,导致焦煤氧化性减弱。随着氧化温度升高,CO2逐渐解析,反应后期耗氧速率变化与干空气条件下冷却至30 ℃焦煤的变化趋势趋于一致。说明预氧化温度越高,焦煤通入CO2冷却至30 ℃时所吸附CO2体积分数越大,反应前期吸附的CO2使得焦煤氧化性减弱。
结合图2(a)、图2(b)可知,预氧化温度相同时,与干空气冷却比较,反应前期吸附的CO2阻碍了预氧化焦煤与O2反应,随着CO2解析,对预氧化焦煤后期反应也产生了一定影响,导致整个反应过程通入CO2冷却焦煤的耗氧速率小于通入干空气冷却焦煤的耗氧速率。这说明预氧化焦煤经过CO2冷却后的耗氧速率减小,煤氧反应难以进行,通入CO2冷却降低了预氧化焦煤发生自燃的可能性。
2.2 CO产生率
由于CO是煤氧复合作用的产物,并且具有高灵敏性,所以,通过CO产生率可以间接反映煤氧化能力的强弱[6]。CO产生率计算公式如下:
$$ {P}_{{\rm{CO}}}\left(t\right)=\frac{{V}_{{{\rm{O}}}_{2}}\left(t\right)({\varphi }_{{\rm{CO}}}^{2}-{\varphi }_{{\rm{CO}}}^{1})}{{\varphi }_{{{\rm{O}}}_{2}}^{0}\left[1-{{\rm{exp}}}\left( { {-\dfrac{SL{V}_{{{\rm{O}}}_{2}}\left(t\right)}{Q{{{\varphi }}}_{{{\rm{O}}}_{2}}^{0}}} } \right)\right]} $$ (2) 式中:
$P_{\mathrm{CO}}(t) $ 为温度为t时CO产生率,mol/(cm3·s);$ {\varphi }_{{\rm{CO}}}^{1} $ 和$ {\varphi }_{{\rm{CO}}}^{2} $ 分别为煤样罐进气口和出气口处CO体积分数,10−6 。将实验所测CO数据代入式(2),得到不同条件下CO产生率随温度变化的规律,如图4所示。由图4可看出,焦煤二次氧化过程中, CO产生率随氧化温度的升高而增大。CO2冷却时,在70 ℃及之前,70 ℃氧化焦煤CO产生率略小于110 ℃氧化焦煤的CO产生率,150 ℃氧化焦煤CO产生率最小。随着温度达到90 ℃,CO产生率排序为70 ℃氧化焦煤>110 ℃氧化焦煤>150 ℃氧化焦煤。这与耗氧速率的变化趋势一致,CO是煤中各基团与O2反应的产物,随着预氧化温度的升高,焦煤吸附CO2越多,耗氧减少,CO产生率相应减小。相同预氧化温度条件下,通入CO2冷却的焦煤CO产生率小于通入干空气冷却的焦煤CO产生率。预氧化焦煤在经过CO2冷却后,煤氧反应难度增大,降低了预氧化焦煤发生自燃的危险。
2.3 表观活化能
表观活化能反映了煤氧化反应所需的最小能量,其值越大,煤氧化自燃越难进行[20]。根据阿伦尼乌斯公式变形后的表观活化能计算公式如下[21]:
$$ \mathrm{ln}{\varphi }_{{\rm{CO}}}=-\frac{E}{R} \frac{1}{{T}_{}}+\mathrm{ln}\left( { \frac{ 10^{4} ALSm{\varphi }_{{{\rm{O}}}_{2}}^{n}}{k{\nu }_{{\rm{g}}}} } \right) $$ (3) 式中:
$\varphi _{\mathrm{CO}} $ 为煤样罐出气口处CO体积分数,${10^{ - 6}}$ ;E为表观活化能,kJ/mol;R为气体常数,R=8.314×10−3 kJ/(mol·K);T为热力学温度,K; A为指前因子,s−1; m为化学反应系数;$ {\varphi }_{{{\rm{O}}}_{2}}^{n} $ 为反应气体中O2体积分数,%,n为反应级数;k为单位换算系数;${\nu _{\rm{g}}}$ 为供风量,m3/s。从式(3)可知,通过对
$\ln \varphi _{{\rm{C O}}} $ 与1/T的各点进行拟合,即可从斜率得出表观活化能E。因为干空气条件下冷却的焦煤在80~90 ℃间CO产生率发生交叉,以80~90 ℃为温度断点求30~80 ℃和90~150 ℃的表观活化能。各组煤$\ln {\varphi _{{\rm{CO}}}}$ 与1/T曲线拟合如图5所示,表观活化能如图6所示。从图5可看出,所有拟合直线的可靠度均在0.942~0.999,能够比较准确地反映
$\ln \varphi _{\mathrm{CO}} $ 与1/T的关系,说明所求表观活化能的值准确性较高。从图6可看出,CO2冷却下的预氧化焦煤,30~80 ℃时的表观活化能排序为110 ℃氧化焦煤<70 ℃氧化焦煤<150 ℃氧化焦煤;90~150 ℃时的表观活化能排序为70 ℃氧化焦煤<150 ℃氧化焦煤<110 ℃氧化焦煤,此温度段内,随着CO2的解析及CO2体积分数逐渐接近,CO2对预氧化焦煤氧化性的影响有所减弱,导致表观活化能与耗氧速率、CO产生率的变化规律出现不一致的情况。预氧化温度相同时,与干空气冷却相比,CO2冷却的预氧化焦煤表观活化能更大,需要消耗更多的能量才能进行二次氧化,预氧化焦煤氧化自燃性相对降低。
3. 结论
1) 预氧化温度相同时,与干空气相比,CO2冷却的预氧化焦煤在二次氧化初期因吸附大量CO2,阻碍了煤氧反应,随着CO2解析,对预氧化焦煤后期也产生了一定影响,导致其整个反应过程氧化性减弱,耗氧速率和CO产生率减小,表观活化能增大。CO2冷却降低了预氧化焦煤自燃危险性。
2) 相较110 ℃和70 ℃预氧化焦煤,150 ℃预氧化焦煤冷却至30 ℃的时间更长,吸附的CO2更多,对煤氧反应阻碍作用越强,耗氧速率和CO产生率越小,表观活化能增大,150 ℃预氧化焦煤自燃危险性也有所下降。因此,当煤矿井下发生煤氧化自燃危险时,需长时间通入CO2来降低矿区启封复采时发生二次氧化复燃的可能性。
-
表 1 EPDM基本性能
Table 1 Properties of EPDM
性能参数 值 性能参数 值 密度/ (g·cm−3) 0.86~0.87 断裂伸长率/% 390~420 丙烯含量/% 20~50 表面张力/(mN·m−1) 25~35 比热容/ (kJ·kg−1·K−1) 2.8 玻璃化温度/℃ −60~−50 热导率/ (W·m−1·K−1) 0.3 长期允许运行温度 /℃ 90 热扩散系数/(cm2·s−1) 0.001 2 电阻率/(Ω·cm) 1015 抗张强度/MPa 7~24 相对介电常数 3~4 门尼黏度ML(1+4)100 ℃ 30~120 介质损耗因数 0.2~0.8 闪点/℃ 360 交流介电强度/(kV·mm−1) 30~40 自燃点/℃ 370 直流介电强度/(kV·mm−1) 70~100 -
[1] 雷清泉. 谈谈对绝缘电介质的模糊认识——从事此领域五十年后的体会与深度迷茫[J]. 青岛科技大学学报(自然科学版),2016,37(1):1-4. LEI Qingquan. Understanding of insualted dielectrics:experience and confusion after being engaged in dieletric research for fifty years[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition),2016,37(1):1-4.
[2] CAI Li,LIN Jingdong,LIAO Xiaoyong. Residual life prediction of marine EPR cable under discontinuous operation[J]. IET Generation,Transmission & Distribution,2020,14(25):6306-6311.
[3] 顾永辉. 煤矿电工手册 电工基础与电机电器(上) [M]. 3版. 北京:煤炭工业出版社,2015. GU Yonghui. Coal mine electrical manual electrical basics and electrical appliances[M]. 3rd ed. Beijing:Coal Industry Press,2015.
[4] 杜协和,陈求索,王健,等. 10 kV防爆电机定子绕组匝间绝缘结构研究[J]. 绝缘材料,2020,53(10):51-54. DU Xiehe,CHEN Qiusuo,WANG Jian,et al. Study on interturn insulation structure of stator winding for 10 kV explosion-proof motor[J]. Insulating Materials,2020,53(10):51-54.
[5] 温敏敏,田慕琴,宋渊,等. 干式变压器用Nomex绝缘纸老化规律及其可靠性分析[J]. 高电压技术,2014,40(11):3430-3437. WEN Minmin,TIAN Muqin,SONG Yuan,et al. Aging law and reliability analysis of Nomex paper used for dry-type transformer insulation[J]. High Voltage Engineering,2014,40(11):3430-3437.
[6] 雷志鹏. 乙丙橡胶绝缘介电性能及其气隙和沿面放电机理的研究[D]. 太原:太原理工大学,2015. LEI Zhipeng. Dielectric properties of EPR and partial discharge mechanism occurring in cavities and along surface of EPR[D]. Taiyuan:Taiyuan University of Technology,2015.
[7] 赵泉林,李晓刚,高瑾. 三元乙丙橡胶的人工气候老化[J]. 北京科技大学学报,2008,30(12):1422-1427. ZHAO Quanlin,LI Xiaogang,GAO Jin. Artificial weathering of ethylene-propylene-diene monomer (EPDM) rubber[J]. Journal of University of Science and Technology Beijing,2008,30(12):1422-1427.
[8] ZHOU Lijun,LIU Cong,QUAN Shengwei,et al. Experimental study on ageing characteristics of electric locomotive ethylene propylene rubber cable under mechanical-thermal combined action[J]. High Voltage,2022,7(4):792-801. DOI: 10.1049/hve2.12202
[9] 李志辉. 三元乙丙橡胶老化研究[D]. 厦门:厦门大学,2018. LI Zhihui. Study on the aging of ethylene-propylene-diene monomer[D]. Xiamen:Xiamen University,2018.
[10] MEN Rujia,LEI Zhipeng,SONG Jiancheng,et al. Effect of thermal ageing on space charge in ethylene propylene rubber at DC voltage[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2019,26(3):792-800. DOI: 10.1109/TDEI.2018.007752
[11] 李蔚,何庆辉,门汝佳,等. 电缆绝缘用三元乙丙橡胶在拉伸状态下的介电频谱分析[J]. 绝缘材料,2023,56(7):40-45. LI Wei,HE Qinghui,MEN Rujia,et al. Dielectric spectrum analysis of ethylene propylene diene monomer for cable insulation under tensile stress[J]. Insulating Materials,2023,56(7):40-45.
[12] 何庆辉,李蔚,门汝佳,等. 拉伸比对乙丙橡胶极化−去极化电流和陷阱分布的影响[J]. 绝缘材料,2023,56(6):28-33. HE Qinghui,LI Wei,MEN Rujia,et al. Influence of tensile ratio on PDC and trap distribution of EPDM[J]. Insulating Materials,2023,56(6):28-33.
[13] 金智新,闫志蕊,王宏伟,等. 新一代信息技术赋能煤矿装备数智化转型升级[J]. 工矿自动化,2023,49(6):19-31. JIN Zhixin,YAN Zhirui,WANG Hongwei,et al. The new generation of information technology empowers the digital and intelligent transformation and upgrading of coal mining equipment[J]. Journal of Mine Automation,2023,49(6):19-31.
[14] 王国法,杜毅博,陈晓晶,等. 从煤矿机械化到自动化和智能化的发展与创新实践——纪念《工矿自动化》创刊50周年[J]. 工矿自动化,2023,49(6):1-18. WANG Guofa,DU Yibo,CHEN Xiaojing,et al. Development and innovative practice from coal mine mechanization to automation and intelligence:Commemorating the 50th anniversary of the founding of Journal of Mine Automation[J]. Journal of Mine Automation,2023,49(6):1-18.
[15] 王福忠,董鹏飞,董秋生,等. 煤矿6 kV动力电缆绝缘在线监测系统研究[J]. 电子测量与仪器学报,2015,29(9):1398-1405. WANG Fuzhong,DONG Pengfei,DONG Qiusheng,et al. Research on online monitoring system of coal mine 6 kV power cable insulation[J]. Journal of Electronic Measurement and Instrumentation,2015,29(9):1398-1405.
[16] 娄建华,李盼,王洁,等. 用于煤矿电缆绝缘参数在线测量的附加低频信号源设计[J]. 工矿自动化,2012,38(10):51-54. LOU Jianhua,LI Pan,WANG Jie,et al. Design of additional low-frequency signal source for online measurement ofinsulation parameters of coal mine cable[J]. Industry and Mine Automation,2012,38(10):51-54.
[17] 孙晓斐,宋建成,雷志鹏,等. 基于电桥法的煤矿高压电缆绝缘电阻在线监测[J]. 煤矿安全,2014,45(2):82-85. SUN Xiaofei,SONG Jiancheng,LEI Zhipeng,et al. Insulation resistance on-line detection of coal mine high voltage cable based on DC bridge method[J]. Safety in Coal Mines,2014,45(2):82-85.
[18] 王文,乔记平,吝伶艳,等. 泄漏电流测量用高精度电磁式微电流传感器的研制[J]. 仪表技术与传感器,2016(12):13-16,56. WANG Wen,QIAO Jiping,LIN Lingyan,et al. High precision electromagnetic micro current sensor used to measure leakage current[J]. Instrument Technique and Sensor,2016(12):13-16,56.
[19] 雷志鹏,宋建成,孙晓斐,等. 矿用高压电缆局部放电测量传感器的研究及应用[J]. 煤炭学报,2013,38(12):2265-2271. LEI Zhipeng,SONG Jiancheng,SUN Xiaofei,et al. Research and application of high-frequency current transformers for partial discharge measurement of mining cables[J]. Journal of China Coal Society,2013,38(12):2265-2271.
[20] 雷志鹏,李蔚,何庆辉,等. 基于介电响应法的矿用电缆绝缘性能评估方法研究[J]. 工矿自动化,2023,49(1):46-55. LEI Zhipeng,LI Wei,HE Qinghui,et al. Study on evaluation method of insulation performance of mine cable based on dielectric response method[J]. Journal of Mine Automation,2023,49(1):46-55.
[21] 丁伟民,许春雨,宋建成. 一种矿用高压电缆介质损耗在线检测系统的设计[J]. 工矿自动化,2010,36(7):9-12. DING Weimin,XU Chunyu,SONG Jiancheng. Design of an on-line detecting system for dielectric loss of mine-used high-voltage cable[J]. Industry and Mine Automation,2010,36(7):9-12.
[22] 齐建伟,宋建成. 矿井高压电缆接头温度在线监测系统的研究[J]. 工矿自动化,2009,35(12):32-34. QI Jianwei,SONG Jiancheng. Research of on-line monitoring system for temperature of high-voltage cable joint of mine[J]. Industry and Mine Automation,2009,35(12):32-34.
[23] 滑增涛. 矿井关键负荷供电电缆温度场分析与安全状态监测预警系统研制[D]. 青岛:青岛科技大学,2022. HUA Zengtao. Analysis of temperature field of power supply cables for key loads in mines and development of monitoring and early warning system for safety status[D]. Qingdao:Qingdao University of Science and Technology,2022.
[24] 李蓉,周凯,饶显杰,等. 基于输入阻抗谱的电缆故障类型识别及定位[J]. 高电压技术,2021,47(9):3236-3245. LI Rong,ZHOU Kai,RAO Xianjie,et al. Identification and location of cable faults based on input impedance spectrum[J]. High Voltage Engineering,2021,47(9):3236-3245.
[25] 单秉亮,李舒宁,程俊华,等. XLPE配电电缆热老化段和集中性缺陷的辨识与定位[J]. 中国电机工程学报,2021,41(23):8231-8241. SHAN Bingliang,LI Shuning,CHENG Junhua,et al. Distinguishing and locating thermal aging segments and concentration defects in XLPE distribution cables[J]. Proceedings of the CSEE,2021,41(23):8231-8241.
[26] 饶显杰,徐忠林,龙林,等. 基于频域反射法的电缆缺陷时域诊断特征波形[J]. 电网技术,2023,47(8):3483-3493. RAO Xianjie,XU Zhonglin,LONG Lin,et al. Cable defect time domain diagnostic characteristic waveform based on frequency domain reflection[J]. Power System Technology,2023,47(8):3483-3493.
[27] 朱昊哲. 基于局部放电的矿用高压电缆绝缘在线监测系统研究[D]. 焦作:河南理工大学,2020. ZHU Haozhe. An online insulation monitoring system based on partial discharge for mine high voltage cable[D]. Jiaozuo:Henan Polytechnic University,2020.
[28] 李峰. 基于卷积神经网络的矿用电缆局部放电模式识别[D]. 西安:西安科技大学,2020. LI Feng. Partial discharge pattern recognition of mining cable based on convolutional neural network[D]. Xi'an:Xi'an University of Science and Technology,2020.
[29] 郭秀才,刘冰冰,王力立. 基于小波包和CS−BP神经网络的矿用电力电缆故障诊断[J]. 计算机应用与软件,2021,38(9):105-110. GUO Xiucai,LIU Bingbing,WANG Lili. Fault diagnosis of mining power cable based on wavelet packet and CS-BP neural network[J]. Computer Applications and Software,2021,38(9):105-110.
[30] 崔晓慧. 基于分形特征和统计特征的矿用高压电缆人工缺陷局部放电模式识别方法的研究[D]. 太原:太原理工大学,2014. CUI Xiaohui. Pattern recognition of partial discharge based on fractal features and statistical features resgarding mine high voltage cables with artificial defects[D]. Taiyuan:Taiyuan University of Technology,2014.
[31] 冯晨. 基于绝缘电阻的电缆用乙丙橡胶绝缘表面电痕故障诊断方法研究[D]. 太原:太原理工大学,2016. FENG Chen. Study on surface electrical tracking fault diagnosis of the cable used ethylene propylene rubber based on insulation resistance[D]. Taiyuan:Taiyuan University of Technology,2016.
[32] 雷志鹏,宋建成,曾君湘,等. 基于稀疏分解的矿用XLPE电缆绝缘电树枝生长阶段识别方法:CN201711289843.8[P]. 2022-03-15. LEI Zhipeng,SONG Jiancheng,ZENG Junxiang,et al. Recognition method of electrical tree propogation stage for the insulation of mining XLPE cables based on the sparse representation theory:CN201711289843.8[P]. 2022-03-15.
[33] 王科,项恩新,曹伟东,等. 基于图像特征和深度森林的乙丙橡胶电缆绝缘老化状态识别[J]. 电测与仪表,2022,59(6):32-36. WANG Ke,XIANG Enxin,CAO Weidong,et al. Identification of aging state of EPR cable insulation based on image feature and deep forest[J]. Electrical Measurement & Instrumentation,2022,59(6):32-36.
[34] 李海英,李玄,宋建成. 基于雷达图法的矿用高压电缆安全预警模型[J]. 煤炭学报,2012,37(11):1941-1946. LI Haiying,LI Xuan,SONG Jiancheng. Early safety warning model for mining HV cable based on radar chart method[J]. Journal of China Coal Society,2012,37(11):1941-1946.
[35] LIN Lingyan,LIN Chen,GENG Pulong,et al. Aging life evaluation of coal mining flexible EPR cables under multi-stresses[J]. IEEE Access,2020,8:53539-53546. DOI: 10.1109/ACCESS.2020.2981359
[36] 门汝佳,雷志鹏,吝伶艳,等. 矿用乙丙橡胶电缆绝缘电热老化状态评估[J]. 工矿自动化,2019,45(4):67-71. DOI: 10.13272/j.issn.1671-251x.2019010038 MEN Rujia,LEl Zhipeng,LIN Lingyan,et al. Insulation state assessment of mine-used ethylene propylene rubber cable under electro-thermal aging[J]. Industry and Mine Automation,2019,45(4):67-71. DOI: 10.13272/j.issn.1671-251x.2019010038
[37] LEI Zhipeng,HE Qinghui,FABIANI D,et al. Dielectric loss of EPDM insulation subjected to thermal stress and pressure[J]. IEEE Access,2022,10:129139-129148. DOI: 10.1109/ACCESS.2022.3228249
[38] MENG Xiaokai,WANG Zhiqiang,LI Guofeng. Nondestructive condition assessment techniques for the ethylene-propylene rubber cable[J]. Research in Nondestructive Evaluation,2017,28(1):45-59. DOI: 10.1080/09349847.2016.1262929
[39] 何庆辉. 采煤机电缆用乙丙橡胶绝缘的多应力老化机理及性能评估方法研究[D]. 太原:太原理工大学,2023. HE Qinghui. Research on multi-stresses aging mechanism and performance evaluation method of EPDM insulation for shearer cables[D]. Taiyuan:Taiyuan University of Technology,2023.
[40] ZHOU Kai,YUAN Hao,LI Yuan,et al. Assessing aging status and type of XLPE cable insulation with a graphic approach based on PDC measurement[J]. IEEE Transactions on Power Delivery,2022,37(6):5114-5123. DOI: 10.1109/TPWRD.2022.3170947
[41] 刘洋. 力热应力作用下采煤机拖拽电缆用乙丙橡胶绝缘性能及失效机理研究[D]. 太原:太原理工大学,2021. LIU Yang. Investigation on insulation performance and failure mechanism of EPR for coal cutter's cable under thermal and mechanical stresses[D]. Taiyuan:Taiyuan University of Technology,2021.
[42] WANG Yanxin,YAN Jing,SUN Qifeng,et al. A mobilenets convolutional neural network for GIS partial discharge pattern recognition in the ubiquitous power Internet of things context:optimization,comparison,and application[J]. IEEE Access,2019,7:150226-150236. DOI: 10.1109/ACCESS.2019.2946662
[43] 张翼,朱永利. 基于深度−广度联合剪枝的电力设备局部放电轻量化诊断方法[J]. 电工技术学报,2023,38(7):1935-1945,1955. ZHANG Yi,ZHU Yongli. A lightweight partial discharge diagnosis method of power equipment based on depth-width joint pruning[J]. Transactions of China Electrotechnical Society,2023,38(7):1935-1945,1955.
-
期刊类型引用(0)
其他类型引用(2)