Mine personnel position monitoring technology
-
摘要: 分析了超声波、激光、视频、惯导、计步器、无线电等矿井测距和定位技术,其中,无线电测距和定位具有定位距离远、定位误差较小、不受光照影响、受粉尘影响小、便于身份识别、系统成本较低等优点,宜用于矿井人员定位和矿井人员精确定位。分析了UWB,ZigBee,RFID,5G,WiFi6等无线电测距和定位技术:矿用UWB具有定位距离较远、定位误差最小、成本较低等优点,宜用于矿井人员精确定位系统;矿用ZigBee具有定位距离远、定位误差较小、成本较低等优点,宜用于矿井人员定位系统等;矿用RFID具有系统成本最低等优点,宜用于煤矿井下作业人员管理系统等;矿井5G和WiFi6定位精度低于UWB,系统成本高于ZigBee,不宜用于矿井人员定位和矿井人员精确定位系统。分析了接收的信号强度指示(RSSI)、到达时间(TOA)、到达时间差(TDOA)、双程测距(TWR)、对称双边双程测距(SDS−TWR)、到达角度(AOA)等矿井人员定位算法:RSSI定位法定位误差大,难以满足矿井人员定位和矿井人员精确定位的需求;TOA定位法要求定位卡和分站时钟计时精确并同步,定位卡和定位分站成本高,不宜用于矿井人员定位和矿井人员精确定位;TDOA定位法不要求定位卡与定位分站时钟同步,对定位卡时钟精度要求低,定位卡成本低,但要求定位分站时钟计时精确,定位分站之间时钟同步,定位分站成本高,可用于矿井人员定位和矿井人员精确定位;TWR定位法和SDS−TWR定位法既不需要定位分站与定位卡时钟同步,也不需要定位分站之间时钟同步,更不需要定位卡之间时钟同步,降低了定位卡和定位分站复杂度和成本,宜用于矿井人员定位和矿井人员精确定位;AOA定位法系统复杂、成本高,远距离定位误差大,有定位死角,只能用于直线无障碍定位,定位天线和定位精度受机械振动等影响大,不宜独立用于矿井人员定位和矿井人员精确定位,但可与其他矿井定位方法联合使用。Abstract: This paper analyzes the technologies of mine ranging and positioning, such as ultrasound, laser, video, inertial navigation, pedometer, and radio. Among them, radio ranging and positioning have the advantages of long positioning distance, small positioning error, no impact from light, little impact from dust, easy identification, and low system cos. They are suitable for positioning mine personnel and precise positioning of mine personnel. The paper analyzes radio ranging and positioning technologies such as UWB, ZigBee, RFID, 5G and WiFi6. Mining UWB has the advantages of long positioning distance, small positioning error, and low cost. It is suitable for precise positioning systems for mine personnel. Mining ZigBee has the advantages of long positioning distance, small positioning error, and low cost. It is suitable for mine personnel positioning systems. Mining RFID has the advantage of having the lowest system cost. It is suitable for coal mine underground personnel management systems. The positioning precision of mine 5G and WiFi6 is lower than UWB, and the system cost is higher than ZigBee. It is unsuitable for mine personnel positioning and precise positioning systems. The received signal strength indication (RSSI), time of arrival (TOA), time differences of arrival (TDOA), two-way ranging (TWR), symmetrical double-sided two way ranging (SDS-TWR), angle of arrival (AOA) and other mine personnel positioning algorithms are analyzed. The RSSI positioning method has a large positioning error, making it difficult to meet the needs of mine personnel positioning and precise positioning. The TOA positioning method requires accurate and synchronized timing between the positioning card and the substation clock. The positioning card and substation have high costs. It is unsuitable for mine personnel positioning and precise positioning. The TDOA positioning method does not require synchronization between the positioning card and the positioning sub-station clock. It has low requirements for the precision of the positioning card clock and low cost of the positioning card. However, it requires accurate timing of the positioning sub-station clock and synchronization between the positioning sub-stations. The positioning substation cost is high. It can be used for mine personnel positioning and precise positioning. The TWR positioning method and SDS-TWR positioning method do not require clock synchronization between the positioning substation and the positioning card, nor do they require clock synchronization between the positioning substations, nor do they require clock synchronization between the positioning cards. This reduces the complexity and cost of the positioning card and the positioning substation. It is suitable for mine personnel positioning and precise positioning. The AOA positioning method system is complex, costly, with large long-distance positioning errors and dead angles. It can only be used for straight-line obstacle-free positioning. The positioning antenna and positioning precision are greatly affected by mechanical vibration. It is not suitable for the independent positioning of mine personnel and precise positioning. However, it can be used in conjunction with other mine positioning methods.
-
-
[1] 孙继平. 煤矿井下安全避险“六大系统”的作用和配置方案[J]. 工矿自动化,2010,36(11):1-4. SUN Jiping. Effect and configuration of "six systems" for safe act of rescue of coal mine underground[J]. Industry and Mine Automation,2010,36(11):1-4.
[2] 国家安全生产监督管理总局. 煤矿安全规程[M]. 北京: 煤炭工业出版社, 2016. State Administration of Work Safety. Coal mine safety regulations[M]. Beijing: China Coal Industry Publishing House, 2016.
[3] 孙继平. 2016年版《煤矿安全规程》监控与通信条款解析[J]. 工矿自动化,2016,42(5):1-8. DOI: 10.13272/j.issn.1671-251x.2016.05.001 SUN Jiping. Explanations for part of monitoring and communication of Coal mine safety regulations of 2016 edition[J]. Industry and Mine Automation,2016,42(5):1-8. DOI: 10.13272/j.issn.1671-251x.2016.05.001
[4] 孙继平. 《煤矿安全规程》安全监控与人员位置监测修订意见[J]. 工矿自动化,2014,40(6):1-7. SUN Jiping. Proposal of revision for safety monitoring and control and personnel position monitoring of Coal mine safety regulation[J]. Industry and Mine Automation,2014,40(6):1-7.
[5] 孙继平. 《煤矿安全规程》监控、通信与监视修订意见[J]. 工矿自动化,2014,40(3):1-6. SUN Jiping. Proposal of revision for monitoring,communication and video surveillance of Coal mine safety regulation[J]. Industry and Mine Automation,2014,40(3):1-6.
[6] AQ 6201−2007 煤矿井下作业人员管理系统通用技术条件[S]. AQ 6201-2007 General technical conditions of the system for the management of the underground personnel in a coal mine[S].
[7] AQ 1048−2007 煤矿井下作业人员管理系统使用与管理规范[S]. AQ 1048-2007 Specification for the usage and management of the system for the management of the underground personnel in a coal mine[S].
[8] AQ 1119−2023 煤矿井下人员定位系统通用技术条件[S]. AQ 1119-2023 General technical conditions of the system for underground personnel positioning[S].
[9] MT/T 1198−2023煤矿井下人员位置监测系统使用与管理规范[S]. MT/T 1198-2023 Specification for the use and management of underground personnel position monitoring system in coal mines[S].
[10] 孙继平. 煤矿井下人员位置监测技术与系统[J]. 煤炭科学技术,2010,38(11):1-5. DOI: 10.13199/j.cst.2010.11.6.sunjp.028 SUN Jiping. Personnel position monitoring technology and system in underground mine[J]. Coal Science and Technology,2010,38(11):1-5. DOI: 10.13199/j.cst.2010.11.6.sunjp.028
[11] 孙继平. 煤矿事故特点与煤矿通信、人员定位及监视新技术[J]. 工矿自动化,2015,41(2):1-5. SUN Jiping. Characteristics of coal mine accidents and new technologies of coal mine communication,personnel positioning and monitoring[J]. Industry and Mine Automation,2015,41(2):1-5.
[12] 孙继平. 煤矿井下人员位置监测系统联网[J]. 煤炭科学技术,2009,37(11):77-79,128. SUN Jiping. Networking of underground mine personnel position monitoring and measuring system[J]. Coal Science and Technology,2009,37(11):77-79,128.
[13] 孙继平,梁伟锋,彭铭,等. 煤矿井下无线传输衰减分析测试与最佳工作频段研究[J]. 工矿自动化,2023,49(4):1-8. DOI: 10.13272/j.issn.1671-251x.18093 SUN Jiping,LIANG Weifeng,PENG Ming,et al. Analysis and testing of wireless transmission attenuation in coal mine underground and research on the optimal operating frequency band[J]. Journal of Mine Automation,2023,49(4):1-8. DOI: 10.13272/j.issn.1671-251x.18093
[14] 孙继平,彭铭,潘涛,等. 无线电波防爆安全阈值研究[J]. 工矿自动化,2023,49(2):1-5. DOI: 10.13272/j.issn.1671-251x.18072 SUN Jiping,PENG Ming,PAN Tao,et al. Research on the safety threshold of radio wave explosion-proof[J]. Journal of Mine Automation,2023,49(2):1-5. DOI: 10.13272/j.issn.1671-251x.18072
[15] 孙继平,江嬴. 矿井车辆无人驾驶关键技术研究[J]. 工矿自动化,2022,48(5):1-5,31. DOI: 10.13272/j.issn.1671-251x.17947 SUN Jiping,JIANG Ying. Research on key technologies of mine unmanned vehicle[J]. Journal of Mine Automation,2022,48(5):1-5,31. DOI: 10.13272/j.issn.1671-251x.17947
[16] 孙继平,张高敏. 矿井应急通信系统[J]. 工矿自动化,2019,45(8):1-5. DOI: 10.13272/j.issn.1671-251x.17483 SUN Jiping,ZHANG Gaomin. Mine emergency communication system[J]. Industry and Mine Automation,2019,45(8):1-5. DOI: 10.13272/j.issn.1671-251x.17483
[17] 孙继平,张高敏. 矿用5G频段选择及天线优化设置研究[J]. 工矿自动化,2020,46(5):1-7. DOI: 10.13272/j.issn.1671-251x.17592 SUN Jiping,ZHANG Gaomin. Research on 5G frequency band selection and antenna optimization setting in coal mine[J]. Industry and Mine Automation,2020,46(5):1-7. DOI: 10.13272/j.issn.1671-251x.17592
[18] 孙继平,陈晖升. 智慧矿山与5G和WiFi6[J]. 工矿自动化,2019,45(10):1-4. DOI: 10.13272/j.issn.1671-251x.17517 SUN Jiping,CHEN Huisheng. Smart mine with 5G and WiFi6[J]. Industry and Mine Automation,2019,45(10):1-4. DOI: 10.13272/j.issn.1671-251x.17517
[19] 孙继平. 煤矿智能化与矿用5G[J]. 工矿自动化,2020,46(8):1-7. DOI: 10.13272/j.issn.1671-251x.17648 SUN Jiping. Coal mine intelligence and mine-used 5G[J]. Industry and Mine Automation,2020,46(8):1-7. DOI: 10.13272/j.issn.1671-251x.17648
[20] 孙继平. 煤矿智能化与矿用5G和网络硬切片技术[J]. 工矿自动化,2021,47(8):1-6. DOI: 10.13272/j.issn.1671-251x.17821 SUN Jiping. Coal mine intelligence,mine 5G and network hard slicing technology[J]. Industry and Mine Automation,2021,47(8):1-6. DOI: 10.13272/j.issn.1671-251x.17821
[21] 孙哲星,孙继平. 异步测时矿井人员精确定位方法[J]. 煤炭学报,2018,43(5):1464-1470. DOI: 10.13225/j.cnki.jccs.2018.0381 SUN Zhexing,SUN Jiping. Underground coal mine accurate personnel positioning method based on asynchronous time-measuring[J]. Journal of China Coal Society,2018,43(5):1464-1470. DOI: 10.13225/j.cnki.jccs.2018.0381
-
期刊类型引用(14)
1. 赵磊. 切顶卸压沿空留巷无煤柱开采技术实践. 陕西煤炭. 2024(08): 57-61 . 百度学术
2. 刘浡. 金辛达煤矿沿空留巷切顶卸压技术. 山西焦煤科技. 2023(04): 42-44+48 . 百度学术
3. 刘毅. 浅部复杂地质条件下切顶卸压无煤柱自成巷技术及应用. 当代化工研究. 2023(16): 120-122 . 百度学术
4. 王艳龙,牛冠宇,高成章,薛勤. 高瓦斯矿井沿空留巷瓦斯治理技术研究与应用. 煤炭与化工. 2023(07): 107-109+114 . 百度学术
5. 冀星忠. 无煤柱110工法切缝孔深度及角度对留巷压力的影响. 能源与节能. 2022(09): 185-188 . 百度学术
6. 于创,王飞,贺志宏,刘振明,焦治平,申龙. 增韧剂改性矿用酚尿醛泡沫的实验研究. 中国矿业. 2021(02): 133-138 . 百度学术
7. 葛晓伟. 厚煤层无煤柱自成巷110工法技术的应用实践. 能源与节能. 2021(03): 178-179 . 百度学术
8. 刘诗杰. 煤矿无煤柱高效精准锯式切顶技术研究. 西部探矿工程. 2021(06): 171-172 . 百度学术
9. 吕人杰,张科学,亢磊,杨海江,王晓玲,朱俊傲. 黄家沟煤矿切顶卸压沿空留巷技术研究与应用. 中国煤炭. 2021(08): 41-47 . 百度学术
10. 杜艳奎. 慈林山煤矿15102沿空留巷工作面综合防灭火技术研究. 煤矿现代化. 2021(06): 64-66 . 百度学术
11. 申斌学,周宏范,朱磊,吴玉意,秋丰岐,王国普,郭林,黄剑斌. 深井复合顶板切顶卸压柔模墙支护沿空留巷技术. 工矿自动化. 2021(11): 101-106 . 本站查看
12. 王正达. 工作面沿空留巷切顶卸压关键参数及主要设备选型. 机械管理开发. 2021(12): 85-86+89 . 百度学术
13. 袁存发. 无煤柱综采工作面沿空留巷支护技术应用. 现代矿业. 2020(05): 33-36 . 百度学术
14. 董志勇. 煤矿井下水力压裂切顶卸压护巷技术应用研究. 工矿自动化. 2019(10): 99-103 . 本站查看
其他类型引用(3)