基于底板岩巷全生命周期瓦斯治理技术研究

翟成, 唐伟

翟成,唐伟. 基于底板岩巷全生命周期瓦斯治理技术研究[J]. 工矿自动化,2023,49(6):95-103, 167. DOI: 10.13272/j.issn.1671-251x.18121
引用本文: 翟成,唐伟. 基于底板岩巷全生命周期瓦斯治理技术研究[J]. 工矿自动化,2023,49(6):95-103, 167. DOI: 10.13272/j.issn.1671-251x.18121
ZHAI Cheng, TANG Wei. Research on full-life cycle gas treatment technology based on floor rock roadway[J]. Journal of Mine Automation,2023,49(6):95-103, 167. DOI: 10.13272/j.issn.1671-251x.18121
Citation: ZHAI Cheng, TANG Wei. Research on full-life cycle gas treatment technology based on floor rock roadway[J]. Journal of Mine Automation,2023,49(6):95-103, 167. DOI: 10.13272/j.issn.1671-251x.18121

基于底板岩巷全生命周期瓦斯治理技术研究

基金项目: 国家杰出青年科学基金项目(51925404)
详细信息
    作者简介:

    翟成(1979—),男,山东滕州人,教授,博士,主要研究方向为矿井瓦斯抽采及灾害防治,E-mail:greatzc@cumt.edu.cn

  • 中图分类号: TD712

Research on full-life cycle gas treatment technology based on floor rock roadway

  • 摘要: 对于缺乏开采保护层条件的矿井,底板岩巷条带预抽煤层瓦斯是主流瓦斯治理方法。分析指出底板岩巷在实际应用中存在空间层位选择差异较大、 穿层冲孔致煤巷围岩稳定性差、底板岩巷掘进造价高且利用效率低等问题。以底板岩巷为基础,考虑整个煤炭生产过程中的瓦斯问题,提出了基于底板岩巷全生命周期瓦斯治理技术,形成了“层位优选−穿层冲孔−穿层注浆−采动抽采−矸石回填”五位一体的瓦斯综合治理模式。以首山一矿为例,通过测定采煤工作面地层的岩石力学性质,基于数值方法分析了巷道掘进和工作面回采条件下底板岩巷的稳定性,根据围岩损伤特征和采动围岩应力分布,确定了将底板岩巷布置在采煤工作面运输巷下部16 m、与上部运输巷内错1 m位置。对底板岩巷穿层水力冲孔钻孔布置进行优化,设定了组间距6.4 m、每组按单双号交错打孔的方案,通过测定水力冲孔钻孔残余瓦斯压力得出水力冲孔有效影响范围超过4 m,钻孔瓦斯浓度较高、衰减较慢,条带预抽效果良好。通过穿层注浆技术改善上部破碎煤体性质,钻孔窥探显示经过穿层注浆加固后的煤体强度提高、破碎程度降低,巷帮变形量监测结果表明巷道围岩整体稳定性较好、煤层强度提高,钻屑量监测结果表明注浆加固范围超过5 m,有效降低了巷道掘进的突出危险性。通过底板岩巷穿层钻孔,对工作面回采期间采动卸压瓦斯进行抽采,发现采动有效影响范围为采煤工作面前方50 m,采动影响区内瓦斯抽采效果良好,采煤工作面风流瓦斯体积分数降低至0.45%以下,有效降低了采煤工作面瓦斯浓度。回采结束后,设计了底板岩巷矸石回填方法,以降低矸石出井成本,提高巷道利用效率。
    Abstract: For mines lacking conditions for mining protective layers, pre extraction of coal seam gas from floor rock roadway strips is the mainstream gas control method. The analysis indicates that there are problems in the practical application of the floor rock roadway, such as significant differences in the selection of spatial layers, poor stability of the surrounding rock of the coal roadway caused by through layer punching, high excavation cost, and low utilization efficiency. Based on the floor rock roadway and considering the gas problem throughout the entire coal production process, a full-life cycle gas treatment technology based on floor rock roadway is proposed. It forms a five-in-one gas comprehensive treatment model of "layer optimization, through layer punching, layer grouting, mining extraction, and gangue backfill". Taking Shoushan No.1 Coal Mine as an example, by measuring the rock mechanics properties of the strata in the coal mining face, the stability of the floor rock roadway under the conditions of roadway excavation and mining face is analyzed based on the numerical method. Based on the characteristics of surrounding rock damage and the distribution of stress in the mining surrounding rock, it has been determined to arrange the bottom rock roadway at a position of 16 meters below the mining face transportation roadway and 1 meter inboard from the upper transportation roadway. The layout of hydraulic punching holes in the floor rock roadway is optimized. The group spacing is set to be 6.4 meters. The interleaving drilling is arranged by odd and even numbers for each group. By measuring the residual gas pressure of hydraulic punching holes, it is found that the effective influence range of hydraulic punching holes exceeds 4 meters. The hole gas concentration is high and the decline is slow. The strip pre-extraction effect is good. The though layer grouting technology is used to improve the properties of the upper broken coal body. The drilling observations show that the strength of the coal body after through layer grouting reinforcement is increased and the degree of fragmentation is decreased. The monitoring results of the deformation of the roadway side show that the overall stability of the surrounding rock of the roadway is good. The strength of the coal seam is increased. The monitoring results of the amount of drilling debris show that the grouting reinforcement range exceeds 5 meters, effectively reducing the risk of outburst in the roadway excavation. Through drilling through the floor rock roadway, the pressure relief gas extracted during the mining process of the working face is extracted. It is found that the effective influence range of mining is 50 meters in front of the coal working face. The gas extraction effect in the mining-affected area is good. The gas concentration in the air flow of the coal working face is reduced to below 0.45%, effectively reducing the gas concentration in the coal mining face. After the completion of mining, a method of backfill gangue in the floor rock roadway is designed to reduce the cost of gangue extraction and improve the utilization efficiency of the roadway.
  • 碎软煤层具有煤体强度低、渗透性差、瓦斯含量高等特点,煤层开采过程中瓦斯灾害严重且治理难度大[1]。我国碎软煤层较为发育,对于碎软煤与瓦斯突出(简称突出)煤层在开采过程中的瓦斯灾害治理多采用底板穿层钻孔、顺层短孔抽采方式,或辅以水力化增透措施[2-7]。底板穿层钻孔抽采煤层瓦斯存在岩巷掘进工程量大、治理周期长、钻孔揭煤段短、抽采治理效果受限等问题,无法实现碎软突出煤层瓦斯大区域高效抽采治理。碎软突出煤层瓦斯顺层短孔抽采方式存在成孔性差、抽采钻孔短、抽采区域小等问题。针对该问题,文献[8-9]提出了梳状定向孔钻进抽采碎软煤层瓦斯技术,借助围岩解决碎软煤层区域抽采钻进难题。文献[10-15]研究了围岩梳状定向长钻孔分段压裂技术,并在阳泉、韩城等典型碎软突出煤层矿区进行了工程应用,实现了碎软突出煤层瓦斯大区域治理。但碎软煤层一般含有大量煤粉颗粒,梳状定向长钻孔钻进揭露煤层或分段压裂施工过程中,均会有大量煤粉颗粒涌出,影响施工安全;前期压裂液均为清水,卸压后裂缝存在不同程度闭合,制约了压裂增透效果。在地面煤层气领域,文献[16-18]开发了水平井顶板加砂分段压裂技术,并在淮北、晋城等典型碎软突出煤层矿区取得了较好的工程应用效果,成为碎软煤层地面煤层气高效开发的关键技术。

    基于煤矿井下碎软煤层围岩定向钻探、水力压裂增透技术已有成果,借鉴地面煤层气水平井顶板加砂分段压裂思路,本文提出煤矿井下碎软煤层顶板加砂分段压裂瓦斯高效抽采技术。煤矿井下压裂泵组排量、压力、携砂能力等均比地面小,压裂能否取得预期效果,国内外没有可供借鉴的经验。从含煤地层煤岩力学和地应力特征差异分析、煤岩层水力加砂压裂数值模拟、典型矿区工程实践等方面对该技术进行探索研究,以期为我国煤矿井下碎软煤层瓦斯大区域高效抽采治理提供新思路。

    压裂裂缝的扩展、延伸与煤岩层脆性指数紧密相关,脆性指数高,则易形成长缝、复杂缝[19]。煤岩层脆性指数由其弹性模量和泊松比共同决定,高弹性模量、低泊松比煤岩层的脆性指数相对较高。典型碎软突出矿区煤层及其顶底板岩层力学参数及地应力见表1。可看出顶板岩层弹性模量为2.36~26.00 GPa,碎软煤层弹性模量为0.7~7.2 GPa,顶板岩层弹性模量为煤层的2.56~6.71倍;顶板岩层泊松比为0.13~0.32,碎软煤层泊松比为0.27~0.40,顶板岩层泊松比为煤层的0.48~0.84倍。相对于碎软煤层,顶板呈现高弹性模量、低泊松比特性,表明岩层具有相对较高的脆性。另外,各矿区煤岩层均以垂向应力为最大主应力,煤层最小水平主应力比其顶板小1.07~1.62 MPa。

    表  1  典型碎软煤层矿区煤层与顶底板岩层力学参数及地应力
    Table  1.  Mechanics parameters and in-situ stress of coal, roof rock and floor rock in typical broken and soft coal seam mines
    矿区及
    煤层
    煤岩类型埋深/m厚度/m弹性模量
    /GPa
    泊松比最小水平
    主应力/MPa
    最大主应力(垂向应力)/MPa
    淮北矿区
    8号煤
    砂质泥岩(顶板)724.904.3026.000.278.9716.95
    8号煤层730.3010.207.200.407.8117.09
    砂质泥岩(底板)740.500.8019.500.3010.2317.17
    淮南矿区
    13号煤
    砂岩(顶板)809.725.003.090.2810.0218.96
    13号煤层815.402.800.700.378.7519.05
    砂岩(底板)820.454.254.680.2511.3019.18
    焦作矿区
    2号煤
    砂岩(顶板)1 215.052.303.120.2713.2228.16
    2号煤层1 217.356.801.220.3611.6028.22
    泥岩(底板)1 224.152.502.020.2813.3728.37
    晋城矿区
    3号煤
    砂岩(顶板)725.4137.792.360.3210.8415.80
    3号煤层763.204.690.850.389.7015.90
    砂岩(底板)770.407.202.520.2910.5415.80
    阳泉矿区
    3号煤
    砂岩(顶板)508.457.4014.100.136.5712.81
    3号煤层515.852.102.100.275.5012.88
    泥岩(底板)521.135.281.850.166.6513.01
    下载: 导出CSV 
    | 显示表格

    从煤岩层可压裂性角度看,碎软煤层脆性指数较低,若直接对其进行压裂,煤体多发生塑性变形,往往形成宽而短的压裂缝,难以形成较理想的长压裂缝网。含煤地层垂向应力一般大于最小水平主应力,在顶板岩层中压裂可形成垂直压裂缝;煤层最小水平主应力较顶板岩层小,顶板压裂缝在沿横向快速延伸的同时,也沿地应力梯度降低方向延伸,从而穿入煤层;在连续泵注条件下,顶板压裂缝不断横向扩展,产生撕裂拉扯作用,在碎软煤层中形成长压裂缝[1620]。因此,间接压裂碎软煤层顶板较直接压裂更能形成沟通范围广、泄流面积大的压裂缝。

    基于上述分析,提出井下碎软煤层顶板加砂分段压裂瓦斯高效抽采思路,如图1所示。借助煤层顶板岩层高弹性模量、低泊松比等特性,以及钻探易成孔、压裂易成缝等优势,应用定向钻进装备在煤层顶板稳定岩层中施工定向长钻孔,钻孔与煤层距离一般小于10 m。定向长钻孔施工完毕后,采用井下压裂泵组和分段压裂工具对钻孔由里向外逐段携砂压裂,压裂完毕后形成一个以定向长钻孔将岩层完全联通、煤岩层中压裂缝网将煤层充分沟通的多级缝网。压裂过程中进入裂隙系统的支撑剂可有效保障缝网处于开启状态,保持裂隙有效联通。钻孔连接抽采管路系统后,在负压和浓度差的双重作用下,煤层瓦斯沿压裂缝网迅速移动,进入定向长钻孔被抽出煤层,实现碎软煤层瓦斯顶板定向长钻孔大区域高效抽采。

    图  1  井下碎软煤层顶板加砂分段压裂瓦斯高效抽采
    Figure  1.  Efficient gas extraction by staged fracturing roof with sand of underground broken and soft coal seam

    根据井下碎软煤层顶板加砂分段压裂瓦斯高效抽采思路,以山西新景矿煤业有限责任公司(以下称新景煤矿)保安区某工作面3号煤层为例,根据该工作面煤层与顶底板岩层力学参数和地应力(表1),建立了“顶板−煤层−底板”煤层及顶板水力加砂压裂地质模型,如图2所示。对模型作出以下假设:① 煤层及其顶底板均为各向同性体,且煤层及其顶底板间胶结面完好。② 模型地应力符合研究区地应力特征,以垂向应力为最大主应力。③ 煤层最小水平主应力梯度小于顶底板。④ 压裂钻孔布置在距煤层2 m的顶板岩层中,走向上平行于煤层最小水平主应力方向。⑤ 钻孔内垂直向下定向喷砂射孔。

    图  2  煤层及顶板水力加砂压裂地质模型
    Figure  2.  Geological model for hydraulic fracturing coal seam and roof with sand

    采用FracproPT数值模拟软件对煤层和顶板水力加砂压裂进行数值模拟,参数设置见表2,对煤层和顶板压裂裂缝延展形态和铺砂情况进行定量研究。

    表  2  煤层和顶板水力加砂压裂数值模拟参数
    Table  2.  Numerical simulation parameters of hydraulic fracturing coal seam and roof with sand
    钻孔裸眼
    段长度/m
    泵注排量/
    (m3·min−1
    前置液
    体积/m3
    携砂液
    体积/m3
    顶替液
    体积/m3
    加砂量/
    m3
    砂比/
    %
    10135105352.12
    下载: 导出CSV 
    | 显示表格

    碎软煤层和顶板水力加砂压裂数值模拟裂缝形态分别如图3图4所示。模拟结果表明:碎软煤层压裂缝在水平方向上的缝半长8.1 m,平均缝宽5.1 cm,支撑剂平均浓度为5.2 kg/m2;顶板压裂缝在水平方向上的缝半长28.3 m,垂直方向上的缝长10.4 m,平均缝宽2.5 cm,支撑剂平均浓度为2.3 kg/m2。顶板压裂缝在水平方向上的长度约为煤层压裂缝的3.49倍,垂向裂缝向下延伸长度大于钻孔与煤层间距,可实现煤层有效沟通;压裂支撑剂多分布于裂缝尖端部位,能够保持裂缝处于开启状态。

    图  3  煤层水力加砂压裂模拟裂缝形态
    Figure  3.  Simulated crack shape of hydraulic fracturing coal seam with sand
    图  4  顶板水力加砂压裂模拟裂缝形态
    Figure  4.  Simulated crack shape of hydraulic fracturing roof with sand

    碎软煤层水力加砂压裂经历煤体塑性变形—压密—断裂等复杂过程,煤体塑性变形、压密过程迫使部分能量损耗,使得裂缝面尖端部位钝化,导致煤层压裂缝规模显著减小[21]。相较于碎软煤层,可认为顶板水力加砂压裂达到破断压力后,岩层直接产生断裂作用;随着缝内净压力不断增大,裂缝在水平方向大范围扩展;同时,产生的撕裂拉扯作用带动裂缝向下延伸并进入煤层,大范围沟通碎软煤层[18]。因此,碎软煤层顶板水力加砂压裂较煤层压裂产生更好的效果。

    工程试验研究区位于新景煤矿某工作面,研究目标煤层为二叠系下统山西组3号煤。煤层埋深为458.9~558.2 m,煤层厚度为2.07~2.70 m,煤体结构类型以碎裂煤、碎粒煤和糜棱煤为主,煤的坚固性系数为0.3~0.8。煤层瓦斯含量为15.95 m3/t,瓦斯压力为2.60 MPa,煤层透气性系数为0.009 7 m2/(MPa2·d),钻孔瓦斯流量衰减系数为0.597 d−1。可见3号煤层是典型的碎软低渗高突煤层。3号煤层直接顶为泥岩或砂质泥岩,厚度为0.3~2.4 m;该层之上主要为中砂岩、粗砂岩和细砂岩,岩层厚度为4.7~13.8 m,平面分布较稳定。测得顶板砂岩层弹性模量为14.1 GPa,泊松比为0.13。

    为便于定向长钻孔钻探施工和分段压裂封隔器膨胀座封,选择分布较稳定且脆性指数较高的3号煤层顶板砂岩层作为加砂分段压裂定向长钻孔布置层位,钻孔与煤层距离约为5 m。设计2个顶板定向长钻孔,钻孔采用两级孔身结构,一开孔径为ϕ215 mm,下入100 m ϕ146 mm套管固孔,二开孔径为120 mm,为裸眼钻孔,钻孔长度均为609 m。2个定向长钻孔布置及分段情况如图5所示。

    图  5  压裂钻孔布置及分段情况
    Figure  5.  Arrangement and segmentation of fracturing boreholes

    完成钻孔施工后,采用拖动式分段压裂工艺,对1号钻孔和2号钻孔分别按6段和10段进行加砂压裂。压裂液由清水、1%KCl及0.05%杀菌剂混合而成,压裂支撑剂选择粒径为0.4~0.6,0.6~0.8 mm的核桃壳砂。1号钻孔和2号钻孔累计压入水量分别为963.90,1 844.6 m3,使用核桃壳砂量分别为13.11,23.36 t,砂比为2.02%~2.56%。2个钻孔分段压裂施工参数见表3

    表  3  分段压裂施工参数
    Table  3.  Construction parameters of staged fracturing
    钻孔压裂
    压裂液
    体积/m3
    压力/
    MPa
    核桃壳砂
    质量/t
    KCl
    质量/t
    杀菌剂
    质量/t
    砂比
    /%
    1号
    钻孔
    1153.7625.7~29.61.760.900.0452.05
    2157.9927.2~29.41.850.970.0852.02
    3177.0427.3~29.12.371.010.1062.10
    4159.7021.3~25.32.411.230.1122.22
    5160.3616.6~21.72.391.260.1102.23
    6155.0718.2~22.62.331.330.1322.23
    小计963.9213.116.700.590
    2号
    钻孔
    1170.1422.4~28.12.221.760.1172.21
    2194.9422.2~29.32.012.080.1392.12
    3189.3825.2~27.92.341.560.1042.36
    4166.4824.2~27.62.021.480.0982.35
    5181.0522.2~27.42.781.760.1172.33
    6176.6219.5~27.52.181.670.1112.36
    7179.7122.1~25.91.791.440.0962.22
    8174.8621.2~28.02.021.670.1112.43
    9176.3121.2~27.82.501.650.1102.36
    10235.1123.3~26.53.492.130.1422.56
    小计1 844.6023.3617.201.146
    下载: 导出CSV 
    | 显示表格

    2个钻孔典型压裂段泵注压力与排量变化曲线如图6所示。可看出在泵注排量稳定的情况下,泵注压力曲线呈现上升、下降及锯齿状波动,较好地反映了注水加砂压裂过程中煤岩层的破裂及裂缝延伸情况。

    图  6  典型压裂段泵注压力与排量变化曲线
    Figure  6.  Variation curves of pump injection pressure and displacement of typical fracturing sections

    压裂施工完成后,采用示踪剂、孔内瞬变电磁等方法对2个钻孔压裂影响范围进行考察,测得2个钻孔压裂影响半径为20~38 m。压裂钻孔连接抽采管路后进行瓦斯抽采,统计100 d瓦斯抽采监测数据,得1号钻孔抽采瓦斯纯量为1 025.11 m3/d,2号钻孔抽采瓦斯纯量为2 810.60 m3/d。2个压裂钻孔百米瓦斯抽采纯量为同区域顺层未压裂钻孔的5.6~15.4倍,由此验证了顶板加砂分段压裂显著提升了碎软煤层瓦斯抽采效果。

    (1) 统计分析了典型碎软煤层矿区煤层与顶底板岩层力学参数和地应力特征,可知顶板岩层弹性模量为碎软煤层的2.56~6.71倍,泊松比为煤层的0.48~0.84倍,含煤地层以垂向应力为最大主应力,煤层最小水平主应力比顶板小1~3 MPa。统计结果显示顶板岩层具有高弹性模量、低泊松比特征,较碎软煤层更易压裂改造,分析认为压裂碎软煤层顶板较压裂煤层效果更好。

    (2) 建立了新景煤矿井下碎软煤层和顶板水力加砂压裂数值模拟地质模型,采用FracproPT数值模拟软件分别对煤层及顶板进行压裂模拟。模拟结果表明,顶板压裂裂缝在垂直方向上主要向煤层方向延伸,在水平方向上压裂缝长为煤层压裂缝长的3.49倍,碎软煤层间接压裂顶板较直接压裂煤层产生更好的压裂效果。

    (3) 在新景煤矿某工作面3号煤层完成2个井下碎软煤层顶板加砂分段压裂瓦斯抽采钻孔工程应用试验。钻孔长度均为609 m,分别按照6段和10段压裂,单孔压入水量分别为963.90,1 844.6 m3,加核桃壳砂量分别为13.11,23.36 t。测得2个钻孔的压裂影响半径为20~38 m,钻孔瓦斯抽采纯量分别为1 025.11,2 810.60 m3/d,百米钻孔瓦斯抽采纯量为同区域顺层未压裂钻孔的5.6~15.4倍。

  • 图  1   基于底板岩巷全生命周期瓦斯治理技术

    Figure  1.   Full-life cycle gas treatment technology based on floor rock roadway

    图  2   地层取样及力学性质测定

    Figure  2.   Stratigraphic sampling and mechanical property determination

    图  3   数值模型

    Figure  3.   Numerical models

    图  4   巷道掘进围岩稳定性数值与实际结果

    Figure  4.   The numerical and actual results of surrounding rock stability after roadway excavation

    图  5   工作面回采过程中底板受影响区域

    Figure  5.   Influenced area of floor during working face mining

    图  6   水力冲孔钻孔布置

    Figure  6.   Layout of hydraulic punching boreholes

    图  7   残余瓦斯压力测定孔

    Figure  7.   Residual gas pressure determination boreholes

    图  8   钻孔瓦斯压力变化

    Figure  8.   Change of borehole gas pressure

    图  9   钻孔瓦斯浓度变化

    Figure  9.   Gas concentration change of boreholes

    图  10   穿层注浆加固

    Figure  10.   Through-layer grouting reinforcement

    图  11   钻孔窥探

    Figure  11.   Borehole peeping

    图  12   煤层内钻孔内壁窥探结果

    Figure  12.   Peeping results of inner wall of boreholes in coal seam

    图  13   巷道变形量

    Figure  13.   Roadway deformation

    图  14   巷道掘进煤体破碎钻屑量分布

    Figure  14.   Distribution of drill cuttings of broken coal body in excavation roadway

    图  15   采动瓦斯穿层抽采

    Figure  15.   Gas extraction through layers during mining

    图  16   采煤工作面前方钻孔瓦斯浓度分布

    Figure  16.   Gas concentration distribution in boreholes in front of mining face

    图  17   动压区瓦斯抽采量占比

    Figure  17.   Percentage of gas extraction in mining-influenced area

    图  18   风流瓦斯浓度变化

    Figure  18.   Change of gas concentration in airflow

    图  19   矸石回填仿真结果

    Figure  19.   Simulation results of gangue backfill

    表  1   岩石力学参数

    Table  1   Rock mechanics parameters

    岩层静态抗压强度巴西拉伸强度
    实验值/
    MPa
    模拟值/
    MPa
    误差/%实验值/
    MPa
    模拟值/
    MPa
    误差/%
    中砂岩102.8105.52.68.48.62.4
    砂质泥岩44.646.23.54.34.14.7
    中砂岩78.177.50.87.27.11.4
    泥岩52.551.51.93.93.67.7
    6.36.21.61.81.75.6
    细砂岩63.662.12.49.49.22.1
    泥灰岩44.346.44.75.25.03.8
    煤线6.36.21.61.81.75.6
    泥灰岩36.133.57.24.13.94.9
    石灰岩138.1140.51.79.79.92.1
    下载: 导出CSV

    表  2   水力冲孔钻孔施工参数

    Table  2   Construction parameters of hydraulic punching boreholes

    钻孔水平角/(°)见煤点/m孔深/m
    1号上帮2427.846.3
    2号上帮3120.434.2
    3号上帮4114.825.1
    4号上帮5511.018.8
    5号上帮758.715.1
    6号上帮858.014.0
    7号下帮668.514.8
    8号下帮4610.518.2
    9号下帮3114.224.3
    10号下帮2119.633.1
    11号下帮1426.844.8
    12号下帮1036.160.0
    下载: 导出CSV

    表  3   设备选型

    Table  3   Equipment selection

    序号设备/工具名称型号/规格
    1局部通风机2BKJNO6.3/2X30
    2推车机TLL6−1
    3带式输送机SSJ−800
    4刮板输送机GW−40T
    5胶带转载机EZQ−300
    6抛矸机CTS37.5/83
    7回柱绞车JH−14
    8铁锹普通
    9撬棍2 m
    10大锤10
    11翻车机FDZY−1.0/6
    12给料机JDG/5.5/F/B−Ⅱ
    下载: 导出CSV
  • [1] 中国煤炭工业协会. 2022煤炭行业发展年度报告[EB/OL]. [2023-05-01]. http://www.coalchina.org.cn/index.php? m=content&c=index&a=show&catid=9&id=146684.

    China National Coal Association. Annual coal industry development report 2022[EB/OL]. [2023-05-01]. http://www.coalchina.org.cn/index.php?m=content&c=index&a=show&catid=9&id=146684.

    [2] 中华人民共和国国家统计局. 中华人民共和国2022年国民经济和社会发展统计公报[EB/OL]. [2023-05-01]. https://www.gov.cn/xinwen/2023-02/28/content_5743623.htm.

    National Bureau of Statistics. Statistical bulletin on national economic and social development of the People's Republic of China, 2022[EB/OL]. [2023-05-01]. https://www.gov.cn/xinwen/2023-02/28/content_5743623.htm.

    [3] 王家臣, 王兆会, 唐岳松, 等. 千米深井超长工作面顶板分区破断驱动机制与围岩区域化控制研究[J/OL]. 煤炭学报: 1-11[2023-05-01]. https://doi.org/10.13225/j.cnki.jccs.2023.0077.

    WANG Jiachen, WANG Zhaohui, TANG Yuesong, et al. Regional failure mechanism of main roof and zonal method for ground control in kilometer-deep longwall panel with large face length[J/OL]. Journal of China Coal Society: 1-11[2023-05-01]. https://doi.org/10.13225/j.cnki.jccs.2023.0077.

    [4] 王兆会,唐岳松,李辉,等. 千米深井超长工作面支架阻力分布特征及影响因素研究[J]. 采矿与安全工程学报,2023,40(1):1-10.

    WANG Zhaohui,TANG Yuesong,LI Hui,et al. Distribution and influence factors of support resistance in longwall panel with large face length of a kilometer-deep coal mine[J]. Journal of Mining & Safety Engineering,2023,40(1):1-10.

    [5] 唐杰兵,鞠文君,陈法兵. 动静载下深井临空巷道冲击破坏分析及防治[J]. 工矿自动化,2021,47(11):88-94,134.

    TANG Jiebing,JU Wenjun,CHEN Fabing. Analysis and prevention of impact damage in deep goaf roadway under dynamic and static load[J]. Industry and Mine Automation,2021,47(11):88-94,134.

    [6] 卢义玉,黄杉,葛兆龙,等. 我国煤矿水射流卸压增透技术进展与战略思考[J]. 煤炭学报,2022,47(9):3189-3211. DOI: 10.13225/j.cnki.jccs.SS22.0602

    LU Yiyu,HUANG Shan,GE Zhaolong,et al. Research progress and strategic thinking of coal mine water jet technology to enhance coal permeability in China[J]. Journal of China Coal Society,2022,47(9):3189-3211. DOI: 10.13225/j.cnki.jccs.SS22.0602

    [7] 翟成,郑仰峰,余旭,等. 水力压裂模拟用煤岩体相似材料基础力学特性实验研究[J]. 煤田地质与勘探,2022,50(8):16-28.

    ZHAI Cheng,ZHENG Yangfeng,YU Xu,et al. Experimental study on the mechanical properties of coal-like materials for hydraulic fracturing simulation[J]. Coal Geology & Exploration,2022,50(8):16-28.

    [8] 方良才. 淮南矿区瓦斯卸压抽采理论与应用技术[J]. 煤炭科学技术,2010,38(8):56-62.

    FANG Liangcai. Gas pressure releasing and drainage theory and application technology in Huainan Mining Area[J]. Coal Science and Technology,2010,38(8):56-62.

    [9] 李宏,刘明举,郝光生,等. 底板梳状长钻孔替代穿层钻孔瓦斯抽采技术可行性[J]. 煤田地质与勘探,2019,47(6):32-38.

    LI Hong,LIU Mingju,HAO Guangsheng,et al. Technology feasibility of gas drainage with comb-shaped long borehole in floor instead of translayer borehole[J]. Coal Geology & Exploration,2019,47(6):32-38.

    [10] 吕有厂,王玉杰. 深井突出煤层底板巷防治煤与瓦斯突出工程研究[J]. 煤炭工程,2017,49(11):13-16.

    LYU Youchang,WANG Yujie. Engineering research on coal and gas outburst control for outburst coal seam floor roadway in deep mine[J]. Coal Engineering,2017,49(11):13-16.

    [11] 李路广,李向阳,魏路浩,等. 千米定向钻机在大宁煤矿瓦斯抽采中的应用[J]. 煤炭工程,2021,53(10):84-88.

    LI Luguang,LI Xiangyang,WEI Luhao,et al. Application of directional kilometer drilling machine in gas extraction in Daning Coal Mine[J]. Coal Engineering,2021,53(10):84-88.

    [12] 张浩浩,李胜,高宏,等. 平煤十矿底板巷穿层钻孔瓦斯抽采模拟研究[J]. 中国安全生产科学技术,2018,14(9):38-43.

    ZHANG Haohao,LI Sheng,GAO Hong,et al. Simulation study on gas extraction by drilling borehole passed through coal seam in floor roadway in Pingdingshan No.10 Mine[J]. Journal of Safety Science and Technology,2018,14(9):38-43.

    [13] 张志义. 低透气性煤层底板岩巷穿层钻孔瓦斯抽采技术[J]. 山东煤炭科技,2019(8):121-123. DOI: 10.3969/j.issn.1005-2801.2019.08.043

    ZHANG Zhiyi. Gas drainage technology by drilling through seam in floor rock roadway of low permeability coal seam[J]. Shandong Coal Science and Technology,2019(8):121-123. DOI: 10.3969/j.issn.1005-2801.2019.08.043

    [14] 刘志伟,张帅. 高瓦斯突出煤层底抽巷合理布置研究[J]. 煤炭科学技术,2018,46(10):155-160.

    LIU Zhiwei,ZHANG Shuai. Study on rational layout of floor gas drainage gateway in high gassy-outburst seam[J]. Coal Science and Technology,2018,46(10):155-160.

    [15] 王兵. 保德煤矿预抽瓦斯巷道布置最佳方案确定[J]. 煤炭技术,2019,38(5):96-98.

    WANG Bing. Determination of the best scheme for pre-draining gas roadway in Baode Coal Mine[J]. Coal Technology,2019,38(5):96-98.

    [16] 施晓亮. 底抽巷空间布设位置优化及瓦斯治理效果研究[J]. 煤,2021,30(11):100-101,108.

    SHI Xiaoliang. Study on optimization of space layout and gas control effect of bottom drainage roadway[J]. Coal,2021,30(11):100-101,108.

    [17] 李林,顾伟,宋刚. 松软破碎煤巷深浅孔联合注浆加固技术[J]. 煤矿安全,2021,52(9):108-115,121.

    LI Lin,GU Wei,SONG Gang. Combined grouting and reinforcement technology for deep and shallow holes in soft and broken coal roadway[J]. Safety in Coal Mines,2021,52(9):108-115,121.

    [18] 李蒙奇,张盛. 松软破碎煤巷两帮深孔卸压注浆支护技术数值分析[J]. 煤矿安全,2016,47(2):204-207.

    LI Mengqi,ZHANG Sheng. Numerical analysis of deep hole pressure relief grouting support technology in two- side of soft and fractured coal roadway[J]. Safety in Coal Mines,2016,47(2):204-207.

    [19] 陶云奇,张剑钊,郭明功,等. 采动卸压瓦斯抽采以孔代巷技术研究与工程实践[J]. 矿业安全与环保,2022,49(5):43-48.

    TAO Yunqi,ZHANG Jianzhao,GUO Minggong,et al. Research and engineering practice of mining-induced pressure relief gas extraction of replacing roadway with borehole technology[J]. Mining Safety & Environmental Protection,2022,49(5):43-48.

    [20] 李延河,翟成,丁熊. 高瓦斯突出煤层底抽巷穿层钻孔动压瓦斯二次抽采技术及应用[J]. 煤矿安全,2022,53(10):191-196. DOI: 10.13347/j.cnki.mkaq.2022.10.026

    LI Yanhe,ZHAI Cheng,DING Xiong. Technology and application of dynamic pressure gas secondary drainage through borehole in bottom drainage roadway of high gas outburst coal seam[J]. Safety in Coal Mines,2022,53(10):191-196. DOI: 10.13347/j.cnki.mkaq.2022.10.026

    [21] 张华,昝金超,李国恩. 湖西矿井矸石回填废弃巷道技术[J]. 煤炭科学技术,2013,41(增刊2):64-65,68.

    ZHANG Hua,ZAN Jinchao,LI Guoen. Technology of abandoned filling roadway in Huxi Coal Mine[J]. Coal Science and Technology,2013,41(S2):64-65,68.

    [22] 武世岩,黄彦华. 含弧形裂隙花岗岩裂纹扩展特征PFC模拟[J]. 中南大学学报(自然科学版),2023,54(1):169-182. DOI: 10.11817/j.issn.1672-7207.2023.01.016

    WU Shiyan,HUANG Yanhua. PFC simulation on crack coalescence behavior of granite specimens containing an arc fissure[J]. Journal of Central South University(Science and Technology),2023,54(1):169-182. DOI: 10.11817/j.issn.1672-7207.2023.01.016

  • 期刊类型引用(8)

    1. 陈俊百. 电力系统继电保护定值校核技术. 石油石化节能与计量. 2025(04): 16-19+25 . 百度学术
    2. 汪娇娇. 基于多参信息量的继电保护整定计算系统. 自动化技术与应用. 2024(01): 30-34 . 百度学术
    3. 赵武智. 考虑不确定因素干扰的电网继电保护在线运检方法. 微型电脑应用. 2024(05): 187-191 . 百度学术
    4. 王怀璧. 基于数据融合的配电网继电保护定值校核方法. 机械工程与自动化. 2023(05): 184-185+188 . 百度学术
    5. 沈健,杨炀,王少春,孙伟刚,陈楚航. 具有自校核功能的配电网调度方法. 微型电脑应用. 2023(09): 103-107 . 百度学术
    6. 龙瑞华,苏禹宁,柯其志,陈华昊,张希,吴重沛. 含分布式电源配电网继电保护定值核校方法. 电气开关. 2023(06): 60-63 . 百度学术
    7. 陈伟钢. 继电保护设备电气二次回路隐患排查研究. 光源与照明. 2022(07): 128-130 . 百度学术
    8. 张静波. 矿山机电设备的供电方式改进研究. 世界有色金属. 2021(15): 31-32 . 百度学术

    其他类型引用(2)

图(19)  /  表(3)
计量
  • 文章访问数:  823
  • HTML全文浏览量:  103
  • PDF下载量:  32
  • 被引次数: 10
出版历程
  • 收稿日期:  2023-05-08
  • 修回日期:  2023-06-05
  • 网络出版日期:  2023-06-29
  • 刊出日期:  2023-06-24

目录

/

返回文章
返回