基于底板岩巷全生命周期瓦斯治理技术研究

翟成, 唐伟

翟成,唐伟. 基于底板岩巷全生命周期瓦斯治理技术研究[J]. 工矿自动化,2023,49(6):95-103, 167. DOI: 10.13272/j.issn.1671-251x.18121
引用本文: 翟成,唐伟. 基于底板岩巷全生命周期瓦斯治理技术研究[J]. 工矿自动化,2023,49(6):95-103, 167. DOI: 10.13272/j.issn.1671-251x.18121
ZHAI Cheng, TANG Wei. Research on full-life cycle gas treatment technology based on floor rock roadway[J]. Journal of Mine Automation,2023,49(6):95-103, 167. DOI: 10.13272/j.issn.1671-251x.18121
Citation: ZHAI Cheng, TANG Wei. Research on full-life cycle gas treatment technology based on floor rock roadway[J]. Journal of Mine Automation,2023,49(6):95-103, 167. DOI: 10.13272/j.issn.1671-251x.18121

基于底板岩巷全生命周期瓦斯治理技术研究

基金项目: 国家杰出青年科学基金项目(51925404)
详细信息
    作者简介:

    翟成(1979—),男,山东滕州人,教授,博士,主要研究方向为矿井瓦斯抽采及灾害防治,E-mail:greatzc@cumt.edu.cn

  • 中图分类号: TD712

Research on full-life cycle gas treatment technology based on floor rock roadway

  • 摘要: 对于缺乏开采保护层条件的矿井,底板岩巷条带预抽煤层瓦斯是主流瓦斯治理方法。分析指出底板岩巷在实际应用中存在空间层位选择差异较大、 穿层冲孔致煤巷围岩稳定性差、底板岩巷掘进造价高且利用效率低等问题。以底板岩巷为基础,考虑整个煤炭生产过程中的瓦斯问题,提出了基于底板岩巷全生命周期瓦斯治理技术,形成了“层位优选−穿层冲孔−穿层注浆−采动抽采−矸石回填”五位一体的瓦斯综合治理模式。以首山一矿为例,通过测定采煤工作面地层的岩石力学性质,基于数值方法分析了巷道掘进和工作面回采条件下底板岩巷的稳定性,根据围岩损伤特征和采动围岩应力分布,确定了将底板岩巷布置在采煤工作面运输巷下部16 m、与上部运输巷内错1 m位置。对底板岩巷穿层水力冲孔钻孔布置进行优化,设定了组间距6.4 m、每组按单双号交错打孔的方案,通过测定水力冲孔钻孔残余瓦斯压力得出水力冲孔有效影响范围超过4 m,钻孔瓦斯浓度较高、衰减较慢,条带预抽效果良好。通过穿层注浆技术改善上部破碎煤体性质,钻孔窥探显示经过穿层注浆加固后的煤体强度提高、破碎程度降低,巷帮变形量监测结果表明巷道围岩整体稳定性较好、煤层强度提高,钻屑量监测结果表明注浆加固范围超过5 m,有效降低了巷道掘进的突出危险性。通过底板岩巷穿层钻孔,对工作面回采期间采动卸压瓦斯进行抽采,发现采动有效影响范围为采煤工作面前方50 m,采动影响区内瓦斯抽采效果良好,采煤工作面风流瓦斯体积分数降低至0.45%以下,有效降低了采煤工作面瓦斯浓度。回采结束后,设计了底板岩巷矸石回填方法,以降低矸石出井成本,提高巷道利用效率。
    Abstract: For mines lacking conditions for mining protective layers, pre extraction of coal seam gas from floor rock roadway strips is the mainstream gas control method. The analysis indicates that there are problems in the practical application of the floor rock roadway, such as significant differences in the selection of spatial layers, poor stability of the surrounding rock of the coal roadway caused by through layer punching, high excavation cost, and low utilization efficiency. Based on the floor rock roadway and considering the gas problem throughout the entire coal production process, a full-life cycle gas treatment technology based on floor rock roadway is proposed. It forms a five-in-one gas comprehensive treatment model of "layer optimization, through layer punching, layer grouting, mining extraction, and gangue backfill". Taking Shoushan No.1 Coal Mine as an example, by measuring the rock mechanics properties of the strata in the coal mining face, the stability of the floor rock roadway under the conditions of roadway excavation and mining face is analyzed based on the numerical method. Based on the characteristics of surrounding rock damage and the distribution of stress in the mining surrounding rock, it has been determined to arrange the bottom rock roadway at a position of 16 meters below the mining face transportation roadway and 1 meter inboard from the upper transportation roadway. The layout of hydraulic punching holes in the floor rock roadway is optimized. The group spacing is set to be 6.4 meters. The interleaving drilling is arranged by odd and even numbers for each group. By measuring the residual gas pressure of hydraulic punching holes, it is found that the effective influence range of hydraulic punching holes exceeds 4 meters. The hole gas concentration is high and the decline is slow. The strip pre-extraction effect is good. The though layer grouting technology is used to improve the properties of the upper broken coal body. The drilling observations show that the strength of the coal body after through layer grouting reinforcement is increased and the degree of fragmentation is decreased. The monitoring results of the deformation of the roadway side show that the overall stability of the surrounding rock of the roadway is good. The strength of the coal seam is increased. The monitoring results of the amount of drilling debris show that the grouting reinforcement range exceeds 5 meters, effectively reducing the risk of outburst in the roadway excavation. Through drilling through the floor rock roadway, the pressure relief gas extracted during the mining process of the working face is extracted. It is found that the effective influence range of mining is 50 meters in front of the coal working face. The gas extraction effect in the mining-affected area is good. The gas concentration in the air flow of the coal working face is reduced to below 0.45%, effectively reducing the gas concentration in the coal mining face. After the completion of mining, a method of backfill gangue in the floor rock roadway is designed to reduce the cost of gangue extraction and improve the utilization efficiency of the roadway.
  • 图  1   基于底板岩巷全生命周期瓦斯治理技术

    Figure  1.   Full-life cycle gas treatment technology based on floor rock roadway

    图  2   地层取样及力学性质测定

    Figure  2.   Stratigraphic sampling and mechanical property determination

    图  3   数值模型

    Figure  3.   Numerical models

    图  4   巷道掘进围岩稳定性数值与实际结果

    Figure  4.   The numerical and actual results of surrounding rock stability after roadway excavation

    图  5   工作面回采过程中底板受影响区域

    Figure  5.   Influenced area of floor during working face mining

    图  6   水力冲孔钻孔布置

    Figure  6.   Layout of hydraulic punching boreholes

    图  7   残余瓦斯压力测定孔

    Figure  7.   Residual gas pressure determination boreholes

    图  8   钻孔瓦斯压力变化

    Figure  8.   Change of borehole gas pressure

    图  9   钻孔瓦斯浓度变化

    Figure  9.   Gas concentration change of boreholes

    图  10   穿层注浆加固

    Figure  10.   Through-layer grouting reinforcement

    图  11   钻孔窥探

    Figure  11.   Borehole peeping

    图  12   煤层内钻孔内壁窥探结果

    Figure  12.   Peeping results of inner wall of boreholes in coal seam

    图  13   巷道变形量

    Figure  13.   Roadway deformation

    图  14   巷道掘进煤体破碎钻屑量分布

    Figure  14.   Distribution of drill cuttings of broken coal body in excavation roadway

    图  15   采动瓦斯穿层抽采

    Figure  15.   Gas extraction through layers during mining

    图  16   采煤工作面前方钻孔瓦斯浓度分布

    Figure  16.   Gas concentration distribution in boreholes in front of mining face

    图  17   动压区瓦斯抽采量占比

    Figure  17.   Percentage of gas extraction in mining-influenced area

    图  18   风流瓦斯浓度变化

    Figure  18.   Change of gas concentration in airflow

    图  19   矸石回填仿真结果

    Figure  19.   Simulation results of gangue backfill

    表  1   岩石力学参数

    Table  1   Rock mechanics parameters

    岩层静态抗压强度巴西拉伸强度
    实验值/
    MPa
    模拟值/
    MPa
    误差/%实验值/
    MPa
    模拟值/
    MPa
    误差/%
    中砂岩102.8105.52.68.48.62.4
    砂质泥岩44.646.23.54.34.14.7
    中砂岩78.177.50.87.27.11.4
    泥岩52.551.51.93.93.67.7
    6.36.21.61.81.75.6
    细砂岩63.662.12.49.49.22.1
    泥灰岩44.346.44.75.25.03.8
    煤线6.36.21.61.81.75.6
    泥灰岩36.133.57.24.13.94.9
    石灰岩138.1140.51.79.79.92.1
    下载: 导出CSV

    表  2   水力冲孔钻孔施工参数

    Table  2   Construction parameters of hydraulic punching boreholes

    钻孔水平角/(°)见煤点/m孔深/m
    1号上帮2427.846.3
    2号上帮3120.434.2
    3号上帮4114.825.1
    4号上帮5511.018.8
    5号上帮758.715.1
    6号上帮858.014.0
    7号下帮668.514.8
    8号下帮4610.518.2
    9号下帮3114.224.3
    10号下帮2119.633.1
    11号下帮1426.844.8
    12号下帮1036.160.0
    下载: 导出CSV

    表  3   设备选型

    Table  3   Equipment selection

    序号设备/工具名称型号/规格
    1局部通风机2BKJNO6.3/2X30
    2推车机TLL6−1
    3带式输送机SSJ−800
    4刮板输送机GW−40T
    5胶带转载机EZQ−300
    6抛矸机CTS37.5/83
    7回柱绞车JH−14
    8铁锹普通
    9撬棍2 m
    10大锤10
    11翻车机FDZY−1.0/6
    12给料机JDG/5.5/F/B−Ⅱ
    下载: 导出CSV
  • [1] 中国煤炭工业协会. 2022煤炭行业发展年度报告[EB/OL]. [2023-05-01]. http://www.coalchina.org.cn/index.php? m=content&c=index&a=show&catid=9&id=146684.

    China National Coal Association. Annual coal industry development report 2022[EB/OL]. [2023-05-01]. http://www.coalchina.org.cn/index.php?m=content&c=index&a=show&catid=9&id=146684.

    [2] 中华人民共和国国家统计局. 中华人民共和国2022年国民经济和社会发展统计公报[EB/OL]. [2023-05-01]. https://www.gov.cn/xinwen/2023-02/28/content_5743623.htm.

    National Bureau of Statistics. Statistical bulletin on national economic and social development of the People's Republic of China, 2022[EB/OL]. [2023-05-01]. https://www.gov.cn/xinwen/2023-02/28/content_5743623.htm.

    [3] 王家臣, 王兆会, 唐岳松, 等. 千米深井超长工作面顶板分区破断驱动机制与围岩区域化控制研究[J/OL]. 煤炭学报: 1-11[2023-05-01]. https://doi.org/10.13225/j.cnki.jccs.2023.0077.

    WANG Jiachen, WANG Zhaohui, TANG Yuesong, et al. Regional failure mechanism of main roof and zonal method for ground control in kilometer-deep longwall panel with large face length[J/OL]. Journal of China Coal Society: 1-11[2023-05-01]. https://doi.org/10.13225/j.cnki.jccs.2023.0077.

    [4] 王兆会,唐岳松,李辉,等. 千米深井超长工作面支架阻力分布特征及影响因素研究[J]. 采矿与安全工程学报,2023,40(1):1-10.

    WANG Zhaohui,TANG Yuesong,LI Hui,et al. Distribution and influence factors of support resistance in longwall panel with large face length of a kilometer-deep coal mine[J]. Journal of Mining & Safety Engineering,2023,40(1):1-10.

    [5] 唐杰兵,鞠文君,陈法兵. 动静载下深井临空巷道冲击破坏分析及防治[J]. 工矿自动化,2021,47(11):88-94,134.

    TANG Jiebing,JU Wenjun,CHEN Fabing. Analysis and prevention of impact damage in deep goaf roadway under dynamic and static load[J]. Industry and Mine Automation,2021,47(11):88-94,134.

    [6] 卢义玉,黄杉,葛兆龙,等. 我国煤矿水射流卸压增透技术进展与战略思考[J]. 煤炭学报,2022,47(9):3189-3211. DOI: 10.13225/j.cnki.jccs.SS22.0602

    LU Yiyu,HUANG Shan,GE Zhaolong,et al. Research progress and strategic thinking of coal mine water jet technology to enhance coal permeability in China[J]. Journal of China Coal Society,2022,47(9):3189-3211. DOI: 10.13225/j.cnki.jccs.SS22.0602

    [7] 翟成,郑仰峰,余旭,等. 水力压裂模拟用煤岩体相似材料基础力学特性实验研究[J]. 煤田地质与勘探,2022,50(8):16-28.

    ZHAI Cheng,ZHENG Yangfeng,YU Xu,et al. Experimental study on the mechanical properties of coal-like materials for hydraulic fracturing simulation[J]. Coal Geology & Exploration,2022,50(8):16-28.

    [8] 方良才. 淮南矿区瓦斯卸压抽采理论与应用技术[J]. 煤炭科学技术,2010,38(8):56-62.

    FANG Liangcai. Gas pressure releasing and drainage theory and application technology in Huainan Mining Area[J]. Coal Science and Technology,2010,38(8):56-62.

    [9] 李宏,刘明举,郝光生,等. 底板梳状长钻孔替代穿层钻孔瓦斯抽采技术可行性[J]. 煤田地质与勘探,2019,47(6):32-38.

    LI Hong,LIU Mingju,HAO Guangsheng,et al. Technology feasibility of gas drainage with comb-shaped long borehole in floor instead of translayer borehole[J]. Coal Geology & Exploration,2019,47(6):32-38.

    [10] 吕有厂,王玉杰. 深井突出煤层底板巷防治煤与瓦斯突出工程研究[J]. 煤炭工程,2017,49(11):13-16.

    LYU Youchang,WANG Yujie. Engineering research on coal and gas outburst control for outburst coal seam floor roadway in deep mine[J]. Coal Engineering,2017,49(11):13-16.

    [11] 李路广,李向阳,魏路浩,等. 千米定向钻机在大宁煤矿瓦斯抽采中的应用[J]. 煤炭工程,2021,53(10):84-88.

    LI Luguang,LI Xiangyang,WEI Luhao,et al. Application of directional kilometer drilling machine in gas extraction in Daning Coal Mine[J]. Coal Engineering,2021,53(10):84-88.

    [12] 张浩浩,李胜,高宏,等. 平煤十矿底板巷穿层钻孔瓦斯抽采模拟研究[J]. 中国安全生产科学技术,2018,14(9):38-43.

    ZHANG Haohao,LI Sheng,GAO Hong,et al. Simulation study on gas extraction by drilling borehole passed through coal seam in floor roadway in Pingdingshan No.10 Mine[J]. Journal of Safety Science and Technology,2018,14(9):38-43.

    [13] 张志义. 低透气性煤层底板岩巷穿层钻孔瓦斯抽采技术[J]. 山东煤炭科技,2019(8):121-123. DOI: 10.3969/j.issn.1005-2801.2019.08.043

    ZHANG Zhiyi. Gas drainage technology by drilling through seam in floor rock roadway of low permeability coal seam[J]. Shandong Coal Science and Technology,2019(8):121-123. DOI: 10.3969/j.issn.1005-2801.2019.08.043

    [14] 刘志伟,张帅. 高瓦斯突出煤层底抽巷合理布置研究[J]. 煤炭科学技术,2018,46(10):155-160.

    LIU Zhiwei,ZHANG Shuai. Study on rational layout of floor gas drainage gateway in high gassy-outburst seam[J]. Coal Science and Technology,2018,46(10):155-160.

    [15] 王兵. 保德煤矿预抽瓦斯巷道布置最佳方案确定[J]. 煤炭技术,2019,38(5):96-98.

    WANG Bing. Determination of the best scheme for pre-draining gas roadway in Baode Coal Mine[J]. Coal Technology,2019,38(5):96-98.

    [16] 施晓亮. 底抽巷空间布设位置优化及瓦斯治理效果研究[J]. 煤,2021,30(11):100-101,108.

    SHI Xiaoliang. Study on optimization of space layout and gas control effect of bottom drainage roadway[J]. Coal,2021,30(11):100-101,108.

    [17] 李林,顾伟,宋刚. 松软破碎煤巷深浅孔联合注浆加固技术[J]. 煤矿安全,2021,52(9):108-115,121.

    LI Lin,GU Wei,SONG Gang. Combined grouting and reinforcement technology for deep and shallow holes in soft and broken coal roadway[J]. Safety in Coal Mines,2021,52(9):108-115,121.

    [18] 李蒙奇,张盛. 松软破碎煤巷两帮深孔卸压注浆支护技术数值分析[J]. 煤矿安全,2016,47(2):204-207.

    LI Mengqi,ZHANG Sheng. Numerical analysis of deep hole pressure relief grouting support technology in two- side of soft and fractured coal roadway[J]. Safety in Coal Mines,2016,47(2):204-207.

    [19] 陶云奇,张剑钊,郭明功,等. 采动卸压瓦斯抽采以孔代巷技术研究与工程实践[J]. 矿业安全与环保,2022,49(5):43-48.

    TAO Yunqi,ZHANG Jianzhao,GUO Minggong,et al. Research and engineering practice of mining-induced pressure relief gas extraction of replacing roadway with borehole technology[J]. Mining Safety & Environmental Protection,2022,49(5):43-48.

    [20] 李延河,翟成,丁熊. 高瓦斯突出煤层底抽巷穿层钻孔动压瓦斯二次抽采技术及应用[J]. 煤矿安全,2022,53(10):191-196. DOI: 10.13347/j.cnki.mkaq.2022.10.026

    LI Yanhe,ZHAI Cheng,DING Xiong. Technology and application of dynamic pressure gas secondary drainage through borehole in bottom drainage roadway of high gas outburst coal seam[J]. Safety in Coal Mines,2022,53(10):191-196. DOI: 10.13347/j.cnki.mkaq.2022.10.026

    [21] 张华,昝金超,李国恩. 湖西矿井矸石回填废弃巷道技术[J]. 煤炭科学技术,2013,41(增刊2):64-65,68.

    ZHANG Hua,ZAN Jinchao,LI Guoen. Technology of abandoned filling roadway in Huxi Coal Mine[J]. Coal Science and Technology,2013,41(S2):64-65,68.

    [22] 武世岩,黄彦华. 含弧形裂隙花岗岩裂纹扩展特征PFC模拟[J]. 中南大学学报(自然科学版),2023,54(1):169-182. DOI: 10.11817/j.issn.1672-7207.2023.01.016

    WU Shiyan,HUANG Yanhua. PFC simulation on crack coalescence behavior of granite specimens containing an arc fissure[J]. Journal of Central South University(Science and Technology),2023,54(1):169-182. DOI: 10.11817/j.issn.1672-7207.2023.01.016

  • 期刊类型引用(3)

    1. 贾瞳,马恒,高科. 基于相继平均移动法通风网络全局风量优化. 辽宁工程技术大学学报(自然科学版). 2023(04): 412-419 . 百度学术
    2. 邵良杉,王振,李昌明. 基于模拟退火与改进粒子群的矿井通风优化算法. 系统仿真学报. 2021(09): 2085-2094 . 百度学术
    3. 刘泽朝,李敬兆,欧阳其春,王冀宁. 基于FWA-RFNN的散装物料智能装车系统. 工矿自动化. 2020(12): 20-24+37 . 本站查看

    其他类型引用(7)

图(19)  /  表(3)
计量
  • 文章访问数:  823
  • HTML全文浏览量:  103
  • PDF下载量:  32
  • 被引次数: 10
出版历程
  • 收稿日期:  2023-05-08
  • 修回日期:  2023-06-05
  • 网络出版日期:  2023-06-29
  • 刊出日期:  2023-06-24

目录

    /

    返回文章
    返回