煤矿井下无线传输衰减分析测试与最佳工作频段研究

孙继平, 梁伟锋, 彭铭, 张高敏, 潘涛, 张侯, 李小伟

孙继平,梁伟锋,彭铭,等. 煤矿井下无线传输衰减分析测试与最佳工作频段研究[J]. 工矿自动化,2023,49(4):1-8. DOI: 10.13272/j.issn.1671-251x.18093
引用本文: 孙继平,梁伟锋,彭铭,等. 煤矿井下无线传输衰减分析测试与最佳工作频段研究[J]. 工矿自动化,2023,49(4):1-8. DOI: 10.13272/j.issn.1671-251x.18093
SUN Jiping, LIANG Weifeng, PENG Ming, et al. Analysis and testing of wireless transmission attenuation in coal mine underground and research on the optimal operating frequency band[J]. Journal of Mine Automation,2023,49(4):1-8. DOI: 10.13272/j.issn.1671-251x.18093
Citation: SUN Jiping, LIANG Weifeng, PENG Ming, et al. Analysis and testing of wireless transmission attenuation in coal mine underground and research on the optimal operating frequency band[J]. Journal of Mine Automation,2023,49(4):1-8. DOI: 10.13272/j.issn.1671-251x.18093

煤矿井下无线传输衰减分析测试与最佳工作频段研究

基金项目: 国家重点研发计划项目(2016YFC0801800)。
详细信息
    作者简介:

    孙继平(1958—),男,山西翼城人,教授,博士,博士研究生导师,中国矿业大学(北京)原副校长;获国家科技进步奖和技术发明奖二等奖4项(第1完成人3项);作为第1完成人获省部级科技进步特等奖和一等奖8项;作为第1完成人主持制定中华人民共和国煤炭行业、安全生产行业和能源行业标准40项;作为第1发明人获国家授权发明专利100余件;主持制定《煤矿安全规程》第十一章“监控与通信”;被SCI和EI检索的第1作者或独立完成论文100余篇;作为第1作者或独立完成著作12部;作为国务院煤矿事故调查专家组组长参加了10起煤矿特别重大事故调查工作;E-mail:sjp@cumtb.edu.cn

  • 中图分类号: TD655

Analysis and testing of wireless transmission attenuation in coal mine underground and research on the optimal operating frequency band

  • 摘要: 5G,UWB,ZigBee,WiFi6等矿井移动通信、人员及车辆定位、无线传输等技术在煤矿井下应用,促进了煤矿安全生产和煤矿智能化建设。然而受电气防爆的限制,煤矿井下无线发射功率不大于6 W,制约着矿井无线传输距离,增加了基站用量和系统成本,不便于系统使用和维护。在无线发射功率受电气防爆限制的条件下,选择传输衰减较小的无线工作频段,可有效提高无线传输距离,减小基站用量和系统成本。为满足矿井无线传输工作频段选择与优化的需求,在国家能源集团国神公司三道沟煤矿的辅助运输大巷和综采工作面分别进行了700 MHz~6 GHz频段的无线传输测试,并对测试结果进行了分析,提出了矿井无线传输优选频段:① 辅助运输大巷无线传输的最佳工作频段为700~910 MHz。② 综采工作面无线传输的最佳工作频段为700~1 710 MHz。③ 辅助运输大巷无线传输衰减比综采工作面无线传输衰减小,且随着频率增大,辅助运输大巷与综采工作面无线传输衰减的差值变小。④ 矿井无线传输的最佳工作频段为700~1 710 MHz。
    Abstract: The application of technologies such as 5G, UWB, ZigBee and WiFi6 in coal mine mobile communication, personnel and vehicle positioning, and wireless transmission has promoted coal mine safety production and intelligent construction. However, due to the limitations of electrical explosion-proof measures, the wireless transmission power underground in coal mines is not greater than 6 W, which restricts the wireless transmission distance in the mine, and increases the usage of base stations and system costs. It is not convenient for system use and maintenance. Under the condition that the wireless transmission power is limited by electrical explosion-proof measures, selecting a wireless operating frequency band with smaller transmission attenuation can effectively increase the wireless transmission distance, reduce the usage of base stations, and reduce system costs. In order to meet the needs of selecting and optimizing the working frequency band of wireless transmission in mines, wireless transmission tests in the 700 MHz to 6 GHz frequency band are conducted in the auxiliary transportation roadway and fully mechanized working face of the Sandaogou Coal Mine of the National Energy Group. The test results are analyzed and the optimal frequency band for wireless transmission in mines is proposed. ① The optimal operating frequency band for wireless transmission in auxiliary transportation roadways is 700 to 910 MHz. ② The optimal working frequency band for wireless transmission in fully mechanized working faces is 700 to 1 710 MHz. ③ The wireless transmission attenuation of the auxiliary transportation roadway is smaller than that of the fully mechanized working face. As the frequency increases, the difference in wireless transmission attenuation between the auxiliary transportation roadway and the fully mechanized working face decreases. ④ The optimal working frequency band for wireless transmission in mines is 700 to 1 710 MHz.
  • 图  1   辅助运输大巷测试现场

    Figure  1.   Test site in auxiliary transportation roadway

    图  2   综采工作面测试现场

    Figure  2.   Test site in fully mechanized working face

    图  3   辅助运输大巷设备安装现场

    Figure  3.   Equipment installation site in auxiliary transportation roadway

    图  4   综采工作面设备安装现场

    Figure  4.   Equipment installation site in fully mechanized working face

    图  5   辅助运输大巷不同频率无线传输衰减曲线

    Figure  5.   Curves of wireless transmission attenuation at different frequencies in auxiliary transportation roadway

    图  6   辅助运输大巷540 m内不同频率无线传输平均衰减曲线

    Figure  6.   Curves of average of wireless transmission attenuation at different frequencies within 540 m of auxiliary transportation roadway

    图  7   综采工作面不同频率无线传输衰减曲线

    Figure  7.   Curves of wireless transmission attenuation at different frequencies in fully mechanized working face

    图  8   综采工作面210 m内不同频率无线传输平均衰减曲线

    Figure  8.   Curves of average wireless transmission attenuation at different frequencies within 210 m of fully mechanized working face

    图  9   辅助运输大巷和综采工作面210 m内不同频率无线传输平均衰减和衰减差值曲线

    Figure  9.   Curves of average attenuation and attenuation difference of wireless transmission at different frequencies within 210 m of auxiliary transportation roadway and fully mechanized working faces

    表  1   辅助运输大巷不同频率无线传输衰减

    Table  1   Wireless transmission attenuation at different frequencies in auxiliary transportation roadway

    收发天线
    距离/m
    辅助运输大巷不同频率无线传输衰减/dB
    700 MHz910 MHz1 200 MHz1 500 MHz1 770 MHz1 950 MHz2 400 MHz2 595 MHz3 550 MHz4 800 MHz5 400 MHz6 000 MHz
    1033.9245.6947.4042.4846.8746.3447.7349.8750.8054.8753.8247.93
    2042.1848.3948.5650.5951.8253.6457.9956.9860.4562.2564.4963.68
    3046.4750.1055.7553.8857.2256.6558.6360.2764.8466.2269.8170.51
    4045.5647.0955.9458.6662.9259.7962.2063.9066.3867.9569.5573.23
    5053.0151.0749.9257.5363.0662.3562.9965.7668.0671.2671.7372.49
    6047.3359.7756.4251.6061.1065.0173.1768.4571.7670.7177.1574.04
    7047.1153.9562.9160.8461.2161.5477.7065.3569.3271.6374.2079.21
    8052.8449.6963.7468.5861.0258.1278.1465.7873.5673.4274.5479.41
    9045.8957.3759.5268.3268.0868.2478.6170.2473.5472.9777.8478.86
    10054.4350.7653.7062.2273.5567.3976.1568.9674.6173.5977.7677.21
    11049.0050.9357.5757.7569.5672.1067.9769.0871.5373.6971.4178.54
    12047.4554.7656.7157.1862.1871.8667.8072.8567.7175.9574.7281.78
    13051.8955.6055.9458.1065.0373.5567.4576.5867.0581.0079.8074.43
    14048.9254.6352.8865.0567.2865.8567.0972.1369.6280.4882.2976.70
    15053.0459.1658.6261.3559.8366.3064.6473.2973.4280.9777.3477.03
    16051.7959.3260.8057.9864.4665.6964.0678.6176.5781.6577.6679.28
    17051.5253.7660.3756.9265.8162.7674.9075.4178.5976.4781.2986.61
    18057.1253.8856.9359.0665.4866.3075.7271.7182.7377.6176.0888.48
    19054.8458.1859.3261.1565.9968.7276.1671.5482.4577.5174.9685.60
    20053.3061.8260.9161.9061.0066.2275.2770.1481.9779.4177.3284.41
    21058.6559.2261.2364.5061.2565.2675.5670.6180.1582.6677.1279.78
    22058.4859.7360.8863.4860.1361.7972.9069.0280.8985.5174.5779.05
    23054.3960.7861.4661.8561.2361.9770.0472.3077.1086.2976.4584.00
    24055.8261.5156.3863.9463.6463.8165.5170.8972.0988.0777.9077.40
    25058.6757.5855.8864.3564.6164.4369.1670.3774.8185.1084.9778.59
    26055.8656.4756.8468.1066.3863.6471.2872.5074.1081.7184.1789.82
    27058.3762.5659.6965.6071.5067.8769.7471.3972.9487.0985.7087.15
    28061.4460.2459.4963.0167.8770.9669.8966.6076.4185.7483.2590.50
    29062.0557.7756.7061.3866.5469.3980.3167.1172.0489.0483.8886.13
    30071.5659.6158.6362.7867.0074.6273.9271.3171.3985.8786.5187.20
    31067.8858.0261.3863.0366.9880.5566.7977.3371.9381.6783.8089.43
    32059.3257.5061.8370.2766.6276.1469.1570.8871.4084.7287.8587.24
    33060.7061.4358.0867.7369.8177.2567.5270.8969.0183.3385.0890.30
    34060.1859.3359.5260.1570.7469.6468.1369.3372.7386.0881.9188.64
    35060.2960.3361.2762.1765.2768.8167.2271.7879.7682.1482.7487.22
    36061.5762.4262.7164.5863.8372.6571.1473.2785.3378.7981.2094.62
    37064.6959.7260.4569.2869.0566.6676.5072.2582.8779.2886.5087.47
    38064.0558.8762.1966.8166.6368.2076.3775.6184.7980.3383.9688.69
    39063.3060.9264.7762.1468.8069.5371.8578.3675.7283.3981.4485.02
    40062.7060.9066.5566.6965.6865.3376.8275.1775.4379.1179.6684.36
    41064.6964.1075.6266.0870.1167.4476.0375.0878.3679.3485.7885.13
    42065.5466.1366.0369.5269.3677.1577.4775.8178.1182.4481.0984.27
    43066.1162.6763.8964.2069.2370.0075.8274.8380.5278.8381.0086.10
    44066.5364.6070.9564.6372.2868.6871.5575.7178.6278.5381.2986.11
    45065.1763.0473.3864.8269.7268.6375.0178.2281.3982.2682.8185.33
    46065.7862.0165.1068.5170.8569.1381.7473.9782.6282.9486.1191.38
    47065.2065.1865.3769.2273.4968.4673.4173.6778.5078.0582.7490.41
    48066.2364.8675.7964.2475.0671.6074.0471.7776.9376.2383.2988.60
    49065.0764.8072.3166.5681.2774.0873.2669.7179.0778.3383.6588.42
    50068.2066.7067.8366.2775.2474.9870.6973.2378.2978.5483.7486.63
    51068.1965.4872.5672.8271.5374.2072.7375.1381.1678.9884.9189.51
    52068.1866.0469.2271.7770.1873.7574.0474.3083.6278.3282.1789.90
    53070.0868.2875.6469.2470.2678.7673.9376.8787.5379.1781.6386.33
    54068.4969.8971.9169.4071.9489.7074.6277.9385.8380.3481.2787.46
    下载: 导出CSV

    表  2   辅助运输大巷540 m内不同频率无线传输平均衰减

    Table  2   Average wireless transmission attenuation at different frequencies within 540 m of auxiliary transportation roadway

    频率/MHz7009101 2001 5001 7701 950
    平均衰减/dB58.1758.9761.5863.1566.4468.21
    频率/MHz2 4002 5953 5504 8005 4006 000
    平均衰减/dB71.2771.3075.4978.8579.5282.92
    下载: 导出CSV

    表  3   综采工作面不同频率无线传输衰减

    Table  3   Wireless transmission attenuation at different frequencies in fully mechanized working face

    收发天线
    距离/m
    综采工作面不同频率无线传输衰减/dB
    700 MHz910 MHz1 200 MHz1 500 MHz1 770 MHz1 950 MHz2 400 MHz2 595 MHz3 550 MHz4 800 MHz5 400 MHz6 000 MHz
    1037.2844.8947.2842.5647.2449.0449.5750.7948.6655.5753.4856.22
    2047.3548.4653.3145.5656.5858.1159.5260.6960.3766.2167.1268.37
    3054.6154.3758.0853.8763.1663.1963.5666.7565.6771.5572.2073.17
    4057.0755.6757.1458.3963.5365.6967.8269.6166.4476.2673.9674.75
    5060.2267.7059.5660.9763.1164.0669.0272.6973.0974.1875.1674.47
    6057.7863.8166.0762.4266.2665.8968.9471.2471.0177.5380.2976.80
    7058.9765.0771.2562.3269.0367.8868.2071.8375.0577.9379.7581.78
    8060.3567.2465.3466.6673.8471.8971.7775.0677.7781.9280.6978.71
    9064.0971.4665.8368.5379.6578.3671.2173.1479.3882.6084.2679.68
    10067.4472.2469.0669.9883.7177.1472.3778.7672.3881.5080.1882.70
    11067.1872.6771.1171.0283.3879.0477.1179.8475.6982.5087.4980.34
    12070.0674.5271.1071.8777.8677.9683.2979.3078.3385.6485.1582.81
    13075.5179.2672.3172.5177.6777.7080.3878.5778.2485.6285.9387.73
    14077.7378.4475.5971.0477.1578.1679.1983.3577.1386.4682.2588.08
    15080.3783.9777.0671.2879.4179.4384.8088.1376.3989.3082.5489.50
    16084.5082.0878.2971.6680.1178.9485.7386.7285.4985.1983.7181.58
    17084.1483.5779.2375.9281.4782.3286.8494.3285.0785.0488.2282.46
    18085.1889.9079.3876.5681.5383.0184.3791.9090.3287.1287.9385.31
    19086.4892.0281.2877.0081.4682.0287.6889.2887.5486.8588.2587.99
    20086.5989.2483.5878.8880.1580.9689.9187.4087.8785.6390.7889.87
    21089.0888.1981.2481.4979.1880.3185.3792.9190.5692.2287.2091.96
    下载: 导出CSV

    表  4   综采工作面210 m内不同频率无线传输平均衰减

    Table  4   Average wireless transmission attenuation at different frequencies within 210 m of fully mechanized working face

    频率/MHz7009101 2001 5001 7701 950
    平均衰减/dB69.8672.2869.9867.2873.6773.19
    频率/MHz2 4002 5953 5504 8005 4006 000
    平均衰减/dB76.0877.7976.8480.5680.6581.02
    下载: 导出CSV

    表  5   辅助运输大巷和综采工作面210 m内不同频率无线传输平均衰减和衰减差值

    Table  5   Average attenuation and attenuation difference of wireless transmission at different frequencies within 210 m of auxiliary transportation roadway and fully mechanized working faces

    位置不同频率无线传输平均衰减/dB
    700 MHz910 MHz1 200 MHz1 500 MHz1 770 MHz1 950 MHz2 400 MHz2 595 MHz3 550 MHz4 800 MHz5 400 MHz6 000 MHz
    辅助运输大巷210 m内49.8254.0556.9158.8462.6163.9969.0468.4571.6773.9274.3376.63
    综采工作面210 m内69.8672.2869.9867.2873.6773.1976.0877.7976.8480.5680.6581.02
    衰减差值/dB19.3218.5512.768.3310.999.406.519.754.636.886.464.05
    下载: 导出CSV
  • [1] 孙继平. 煤矿智能化与矿用5G和网络硬切片技术[J]. 工矿自动化,2021,47(8):1-6. DOI: 10.13272/j.issn.1671-251x.17821

    SUN Jiping. Coal mine intelligence,mine 5G and network hard slicing technology[J]. Industry and Mine Automation,2021,47(8):1-6. DOI: 10.13272/j.issn.1671-251x.17821

    [2] 孙继平,程加敏. 煤矿智能化信息综合承载网[J]. 工矿自动化,2022,48(3):1-4,90.

    SUN Jiping,CHENG Jiamin. Coal mine intelligent information comprehensive carrier network[J]. Journal of Mine Automation,2022,48(3):1-4,90.

    [3] 孙继平. 智能矿山信息综合承载网与网络切片路由器[J]. 智能矿山,2023,4(1):14-17.

    SUN Jiping. Intelligent mine information comprehensive bearer network and network slicing router[J]. Journal of Intelligent Mine,2023,4(1):14-17.

    [4] 孙继平,江嬴. 矿井车辆无人驾驶关键技术研究[J]. 工矿自动化,2022,48(5):1-5,31. DOI: 10.13272/j.issn.1671-251x.17947

    SUN Jiping,JIANG Ying. Research on key technologies of mine unmanned vehicle[J]. Journal of Mine Automation,2022,48(5):1-5,31. DOI: 10.13272/j.issn.1671-251x.17947

    [5] 孙继平,徐卿. 矿井无线中继应急通信系统实现方法[J]. 工矿自动化,2021,47(5):1-8.

    SUN Jiping,XU Qing. Implementation method of mine wireless relay emergency communication system[J]. Industry and Mine Automation,2021,47(5):1-8.

    [6] 孙继平,彭铭,潘涛,等. 无线电波防爆安全阈值研究[J]. 工矿自动化,2023,49(2):1-5. DOI: 10.13272/j.issn.1671-251x.18072

    SUN Jiping,PENG Ming,PAN Tao,et al. Research on the safety threshold of radio wave explosion-proof[J]. Journal of Mine Automation,2023,49(2):1-5. DOI: 10.13272/j.issn.1671-251x.18072

    [7] 潘涛,彭铭,徐会军,等. 煤矿井下无线电波防爆安全阈值及测试方法[J]. 智能矿山,2023,4(1):78-82.

    PAN Tao,PENG Ming,XU Huijun,et al. Safety thresholds and test methods for radio wave explosion protection in underground coal mines[J]. Journal of Intelligent Mine,2023,4(1):78-82.

    [8] 邵水才,郭旭东,彭铭,等. 煤矿井下无线传输分析方法[J]. 工矿自动化,2022,48(10):123-128. DOI: 10.13272/j.issn.1671-251x.18038

    SHAO Shuicai,GUO Xudong,PENG Ming,et al. Coal mine underground wireless transmission analysis method[J]. Journal of Mine Automation,2022,48(10):123-128. DOI: 10.13272/j.issn.1671-251x.18038

    [9] 梁伟锋,孙继平,彭铭,等. 煤矿井下无线电波防爆安全功率阈值研究[J]. 工矿自动化,2022,48(12):123-128,163. DOI: 10.13272/j.issn.1671-251x.18045

    LIANG Weifeng,SUN Jiping,PENG Ming,et al. Research on safe power threshold of radio wave explosion-proof in coal mine[J]. Journal of Mine Automation,2022,48(12):123-128,163. DOI: 10.13272/j.issn.1671-251x.18045

    [10] 丁序海,潘涛,彭铭,等. 煤矿井下无线电波对人体的影响[J]. 工矿自动化,2022,48(11):84-92,144. DOI: 10.13272/j.issn.1671-251x.18044

    DING Xuhai,PAN Tao,PENG Ming,et al. Influence of underground radio wave on human body in coal mine[J]. Journal of Mine Automation,2022,48(11):84-92,144. DOI: 10.13272/j.issn.1671-251x.18044

    [11] 孙继平. 煤矿机器人电气安全技术研究[J]. 煤炭科学技术,2019,47(4):1-6. DOI: 10.13199/j.cnki.cst.2019.04.001

    SUN Jiping. Research on electrical safety technology of coal mine robot[J]. Coal Science and Technology,2019,47(4):1-6. DOI: 10.13199/j.cnki.cst.2019.04.001

    [12] 孙继平,张高敏. 矿井应急通信系统[J]. 工矿自动化,2019,45(8):1-5. DOI: 10.13272/j.issn.1671-251x.17483

    SUN Jiping,ZHANG Gaomin. Mine emergency communication system[J]. Industry and Mine Automation,2019,45(8):1-5. DOI: 10.13272/j.issn.1671-251x.17483

    [13] 孙继平. 煤矿智能化与矿用5G[J]. 工矿自动化,2020,46(8):1-7.

    SUN Jiping. Coal mine intelligence and mine-used 5G[J]. Industry and Mine Automation,2020,46(8):1-7.

    [14] 孙继平,陈晖升. 智慧矿山与5G和WiFi6[J]. 工矿自动化,2019,45(10):1-4. DOI: 10.13272/j.issn.1671-251x.17517

    SUN Jiping,CHEN Huisheng. Smart mine with 5G and WiFi6[J]. Industry and Mine Automation,2019,45(10):1-4. DOI: 10.13272/j.issn.1671-251x.17517

    [15] 孙继平. 矿井宽带无线传输技术研究[J]. 工矿自动化,2013,39(2):1-5. DOI: 10.7526/J.ISSN.1671-251X.2013.02.001

    SUN Jiping. Research of mine wireless broadband transmission technology[J]. Industry and Mine Automation,2013,39(2):1-5. DOI: 10.7526/J.ISSN.1671-251X.2013.02.001

    [16] 孙继平. 煤矿信息化自动化新技术与发展[J]. 煤炭科学技术,2016,44(1):19-23,83. DOI: 10.13199/j.cnki.cst.2016.01.004

    SUN Jiping. New technology and development of mine informatization and automation[J]. Coal Science and Technology,2016,44(1):19-23,83. DOI: 10.13199/j.cnki.cst.2016.01.004

    [17] 孙继平. 煤矿信息化与自动化发展趋势[J]. 工矿自动化,2015,41(4):1-5. DOI: 10.13272/j.issn.1671-251x.2015.04.001

    SUN Jiping. Development trend of coal mine informatization and automation[J]. Industry and Mine Automation,2015,41(4):1-5. DOI: 10.13272/j.issn.1671-251x.2015.04.001

    [18] 孙继平,张高敏. 基于混合射线追踪的矿井电磁波分析方法[J]. 煤炭学报,2022,47(7):2834-2843. DOI: 10.13225/j.cnki.jccs.2021.1920

    SUN Jiping,ZHANG Gaomin. Mine electromagnetic wave analysis method based on mixed raytracing[J]. Journal of China Coal Society,2022,47(7):2834-2843. DOI: 10.13225/j.cnki.jccs.2021.1920

    [19] 张高敏,刘毅,彭铭. UWR-FDTD矿井电磁波数值分析方法[J]. 煤炭学报,2022,47(11):4157-4166. DOI: 10.13225/j.cnki.jccs.2022.0823

    ZHANG Gaomin,LIU Yi,PENG Ming. Numerical analysis method of the electromagnetic fields in coal mine roadway using UWR-FDTD[J]. Journal of China Coal Society,2022,47(11):4157-4166. DOI: 10.13225/j.cnki.jccs.2022.0823

    [20] 张高敏,刘毅,彭铭. FDTD矿井无线传输特性分析方法研究[J]. 煤炭科学技术,2022,50(11):202-212. DOI: 10.13199/j.cnki.cst.2022-1273

    ZHANG Gaomin,LIU Yi,PENG Ming. Resarch on the FDTD analysis method of wireless transmission characteristics in underground mine[J]. Coal Science and Technology,2022,50(11):202-212. DOI: 10.13199/j.cnki.cst.2022-1273

    [21] 孙继平, 张高敏. 矿用5G频段选择及天线优化设置研究[J]. 工矿自动化, 2020, 46(5): 1-7.

    SUN Jiping, ZHANG Gaomin. Research on 5G frequency band selection and antenna optimization setting in coal mine[J]. Industry and Mine Automation. 2020, 46(5): 1-7.

  • 期刊类型引用(14)

    1. 朱广贺,朱智强,袁逸萍. 基于改进CNN的旋转设备转子振动故障预测仿真. 计算机仿真. 2023(06): 533-537 . 百度学术
    2. 衡星辰,林志达,张今革,曹小明,魏理豪. 基于自适应窗口的网络IT设备运行监控预警系统. 微型电脑应用. 2023(08): 103-105+110 . 百度学术
    3. 马晶,白峥言,刘献礼,刘强,贾儒鸿,周强. 结合GA-BP与集成学习的钻削过程刀具状态实时监测. 机械科学与技术. 2023(10): 1678-1689 . 百度学术
    4. 杨洋,张文博,左晨曦,王子轩. 基于“人-机-环-管”理论的数字化煤矿安全管理研究演化分析. 煤矿安全. 2021(02): 239-243+247 . 百度学术
    5. 贾勇,陈晓飞,翟旭. 基于CRIO的数控机械在线监测诊断系统设计. 计算机测量与控制. 2021(06): 14-18 . 百度学术
    6. 李旭,吴雪菲,田野,董博,党恩辉. 基于云平台的综采设备群远程故障诊断系统. 工矿自动化. 2021(07): 57-62 . 本站查看
    7. 孟瑞峰. 煤矿旋转机械在线故障诊断及预警系统设计研究. 中国设备工程. 2021(15): 165-166 . 百度学术
    8. 郑磊. 基于时序数据的工作面设备故障预测研究. 工矿自动化. 2021(08): 90-95 . 本站查看
    9. 田小涛. 工作面双齿辊破碎机自动控制系统设计及应用. 煤矿机械. 2020(05): 152-155 . 百度学术
    10. 沈颉,郭欣,何嘉. 基于改进希尔伯特黄的故障特征提取方法研究. 智能计算机与应用. 2020(03): 106-110 . 百度学术
    11. 冯俊涛,戚厚军,谭鹏,王飞跃,杨正. 基于LabVIEW的振动信号分析与报警系统的设计. 机械研究与应用. 2020(03): 145-148+152 . 百度学术
    12. 张传俊,张春芳,李艳华,朱炼. 基于人工智能的故障预警系统研究. 兰州文理学院学报(自然科学版). 2020(04): 52-56+114 . 百度学术
    13. 张新永. 综采设备多元预警管理系统设计. 陕西煤炭. 2020(04): 199-202 . 百度学术
    14. 鞠晨,张超,樊红卫,张旭辉,杨一晴,严杨. 基于小波包分解和PSO-BPNN的滚动轴承故障诊断. 工矿自动化. 2020(08): 70-74 . 本站查看

    其他类型引用(9)

图(9)  /  表(5)
计量
  • 文章访问数:  890
  • HTML全文浏览量:  126
  • PDF下载量:  99
  • 被引次数: 23
出版历程
  • 收稿日期:  2023-03-23
  • 修回日期:  2023-04-03
  • 网络出版日期:  2023-04-26
  • 刊出日期:  2023-04-24

目录

    /

    返回文章
    返回