Research on remote control technology of mining equipment based on 5G
-
摘要: 矿用5G为智能矿山建设提供了高速信息传输通道,基于5G的矿用装备远程控制应用是实现少人化、无人化矿井生产的关键手段。分析了矿用4G、WiFi6应用于矿用装备远程控制中的不足,指出5G技术是实现矿用装备远程控制的必要支撑手段。运用信息物理系统架构研究方法构建了基于5G的矿用装备远程控制应用系统参考架构。以5G+采煤机远程控制为例,研究了5G传输链路的关键技术,梳理了监视监测数据与远程控制数据的信息流。当前5G网络为层三通信方式,而矿用装备远程控制的控制系统与受控设备之间需要进行点对点层二通信,针对该问题,研究了层二隧道构建方法和5G LAN技术,建立了远程控制信息传输的稳定通道。针对现场监视数据的大带宽传输需求与远程控制数据的低时延传输需求,提出了资源预调度与请求调度灵活适配的空口资源分配机制。现场测试结果表明:通过层二隧道共传输数据包13 328个,未出现丢包或接收不成功的现象;端到端时延为11.5~23.8 ms,能够满足矿用装备远程控制的传输需求;RSRP(参考信号接收功率)分布在−93~−53 dB·m之间,SINR(信号与干扰加噪声比)分布在10~38 dB之间,无线覆盖情况良好。矿用5G无线通信系统的可靠性、端到端时延及无线覆盖情况能够满足采煤机远程控制的传输需求。Abstract: Mining 5G provides a high-speed information transmission channel for the construction of intelligent mines. The remote control application of mining equipment based on 5G is a key means to achieve less human and unmanned mine production. The paper analyzes the shortcomings of using 4G and WiFi6 in remote control of mining equipment, and points out that 5G technology is a necessary support method for achieving remote control of mining equipment. A reference architecture for remote control application system of mining equipment based on 5G is constructed using the research method of information physics system architecture. Taking 5G+coal mining machine remote control as an example, the key technologies of 5G transmission link are studied. The information flow between monitoring data and remote control data is sorted out. The current 5G network adopts a layer three communication method, and point-to-point layer two communication is required between the control system of remote control of mining equipment and the controlled equipment. In order to solve this problem, a layer two tunnel construction method and 5G LAN technology have been studied, and a stable channel for remote control information transmission has been established. In order to address the high bandwidth transmission requirements of on-site monitoring data and the low latency transmission requirements of remote control data, a flexible and adaptable over the air bandwidth allocation mechanism for resource pre-scheduling and request scheduling is proposed. The on-site test results show that a total of 13 328 data packets are transmitted through the layer two tunnel, without any packet loss or unsuccessful reception. The end-to-end delay is 11.5-23.8 ms, which can meet the transmission requirements of remote control of mining equipment. The RSRP(reference signal receiving power) distribution is between −93 dB·m and −53 dB·m, and the SINR(signal to interference plus noise ratio) distribution is between 10 dB and 38 dB, indicating good wireless coverage. The reliability, end-to-end delay, and wireless coverage of the mining 5G wireless communication system can meet the transmission requirements of remote control of shearers.
-
Keywords:
- intelligent mining /
- 5G /
- remote control /
- low latency /
- layer two tunnel /
- 5G LAN /
- over the air bandwidth scheduling
-
-
-
[1] 孙继平. 煤矿智能化与矿用5G[J]. 工矿自动化,2020,46(8):1-7. SUN Jiping. Coal mine intelligence and mine-used 5G[J]. Industry and Mine Automation,2020,46(8):1-7.
[2] 孙继平. 煤矿智能化与矿用5G和网络硬切片技术[J]. 工矿自动化,2021,47(8):1-6. SUN Jiping. Coal mine intelligence,mine 5G and network hard slicing technology[J]. Industry and Mine Automation,2021,47(8):1-6.
[3] 王国法,赵国瑞,胡亚辉. 5G技术在煤矿智能化中的应用展望[J]. 煤炭学报,2020,45(1):16-23. WANG Guofa,ZHAO Guorui,HU Yahui. Application prospect of 5G technology in coal mine intelligence[J]. Journal of China Coal Society,2020,45(1):16-23.
[4] 霍振龙. 矿井无线通信系统现状与发展趋势[J]. 工矿自动化,2022,48(6):1-5. HUO Zhenlong. Current situation and development trend of mine wireless communication system[J]. Journal of Mine Automation,2022,48(6):1-5.
[5] 李晨鑫. 矿用5G通信演进技术研究[J]. 工矿自动化,2023,49(3):6-12. LI Chenxin. Research on mine 5G-advanced communication evolution technology[J]. Journal of Mine Automation,2023,49(3):6-12.
[6] 王国法,张良,李首滨,等. 煤矿无人化智能开采系统理论与技术研发进展[J]. 煤炭学报,2023,48(1):34-53. WANG Guofa,ZHANG Liang,LI Shoubin,et al. Progresses in theory and technological development of unmanned smart mining system[J]. Journal of China Coal Society,2023,48(1):34-53.
[7] 范京道,闫振国,李川. 基于5G技术的煤矿智能化开采关键技术探索[J]. 煤炭科学技术,2020,48(7):92-97. FAN Jingdao,YAN Zhenguo,LI Chuan. Exploration of intelligent coal mining key technology based on 5G technology[J]. Coal Science and Technology,2020,48(7):92-97.
[8] 张凯隆. 智能化综采工作面全景视频远控技术研究及应用[J]. 中国煤炭,2023,49(2):70-81. DOI: 10.3969/j.issn.1006-530X.2023.02.009 ZHANG Kailong. Research and application of panoramic video remote control technology for intelligent fully mechanized mining face[J]. China Coal,2023,49(2):70-81. DOI: 10.3969/j.issn.1006-530X.2023.02.009
[9] 顾义东. 5G技术在煤矿掘进工作面运输系统中的应用[J]. 工矿自动化,2022,48(6):64-68. DOI: 10.13272/j.issn.1671-251x.17919 GU Yidong. Application of 5G technology in coal mine heading face transportation system[J]. Journal of Mine Automation,2022,48(6):64-68. DOI: 10.13272/j.issn.1671-251x.17919
[10] 孙继平,江嬴. 矿井车辆无人驾驶关键技术研究[J]. 工矿自动化,2022,48(5):1-5,31. DOI: 10.13272/j.issn.1671-251x.17947 SUN Jiping,JIANG Ying. Research on key technologies of mine unmanned vehicle[J]. Journal of Mine Automation,2022,48(5):1-5,31. DOI: 10.13272/j.issn.1671-251x.17947
[11] 李晨鑫,张立亚. 煤矿井下网联式自动驾驶技术研究[J]. 工矿自动化,2022,48(6):49-55. DOI: 10.13272/j.issn.1671-251x.17930 LI Chenxin,ZHANG Liya. Research on the network connected automatic driving technology in underground coal mine[J]. Journal of Mine Automation,2022,48(6):49-55. DOI: 10.13272/j.issn.1671-251x.17930
[12] 工业和信息化部. 工业和信息化部关于加强和规范2 400 MHz、5 100 MHz和5 800 MHz频段无线电管理有关事宜的通知[EB/OL]. (2021-09-08)[2023-03-10]. https://www.miit.gov.cn/zwgk/zcwj/wjfb/tz/art/2021/art_e4ae71252eab42928daf0ea620976e4e.html. Ministry of Industry and Information Technology. Ministry of Industry and Information Technology:notification of related matters for strengthening and standardizing radio management in the 2 400 MHz,5 100 MHz,and 5 800 MHz frequency bands[EB/OL]. (2021-09-08)[2023-03-10]. https://www.miit.gov.cn/zwgk/zcwj/wjfb/tz/art/2021/art_e4ae71252eab42928daf0ea620976e4e.html.
[13] 3GPP TS 38.211. 3rd generation partnership project; technical specification group radio access network; NR; physical channels and modulation (Release 17)[S
[14] 3GPP TS 38.212. 3rd generation partnership project; technical specification group radio access network; NR; multiplexing and channel coding (Release 17) [S
[15] 3GPP TS 38.213. 3rd generation partnership project; technical specification group radio access network; NR; physical layer procedures for control (Release 17) [S
[16] 杨挺,刘亚闯,刘宇哲,等. 信息物理系统技术现状分析与趋势综述[J]. 电子与信息学报,2021,43(12):3393-3406. YANG Ting,LIU Yachuang,LIU Yuzhe,et al. Review on cyber-physical system:technology analysis and trends[J]. Journal of Electronics & Information Technology,2021,43(12):3393-3406.
[17] 李克强. 智能网联汽车信息物理系统参考架构1.0发布[J]. 智能网联汽车,2019(6):66-69. LI Keqiang. Intelligent connected vehicle information physics system reference architecture 1.0 Release[J]. Intelligent Connected Vehicles,2019(6):66-69.
[18] 3GPP TS 22.104. 3rd generation partnership project; service requirements for cyber-physical control applications in vertical domains(Release 17)[S
[19] 黄蓉,唐雄燕,裴郁杉,等. 5G工业专网架构和关键技术探讨[J]. 移动通信,2022,46(8):8-14. HUANG Rong,TANG Xiongyan,PEI Yushan,et al. Discussion on 5G industrial private network architecture and key technologies[J]. Mobile Communications,2022,46(8):8-14.
[20] 3GPP TS 38.321. 3rd generation partnership project; technical specification group radio access network; NR; medium access control (MAC) protocol specification (Release 17)[S
[21] 李卫,孙雷,王健全,等. 面向工业自动化的5G与TSN协同关键技术[J]. 工程科学学报,2022,44(6):1044-1052. LI Wei,SUN Lei,WANG Jianquan,et al. Key technologies to enable 5G and TSN coordination for industrial automation[J]. Chinese Journal of Engineering,2022,44(6):1044-1052.
-
期刊类型引用(33)
1. 曾庆良,雷小万,孟昭胜,万丽荣,班新亮,胡雨龙. 基于运动姿态感知的综放支架主动控顶空间研究. 煤炭学报. 2025(01): 645-660 . 百度学术
2. 陈湘源. 综采工作面轨迹测量与直线度控制方法. 矿业研究与开发. 2024(03): 185-191 . 百度学术
3. 马宏伟,赵英杰,薛旭升,吴海雁,毛清华,杨会武,张旭辉,车万里,曹现刚,赵友军,王川伟,赵亦辉,王鹏,孙思雅,马柯翔,李烺. 智能采煤机器人关键技术. 煤炭学报. 2024(02): 1174-1182 . 百度学术
4. 刘相通,李曼,沈思怡,曹现刚,刘俊祺. 液压支架关键姿态参数测量系统. 工矿自动化. 2024(04): 41-49 . 本站查看
5. 高思伟,谷敏永,李殿鹏. 综采工作面液压支架测高传感器设计. 工矿自动化. 2024(06): 129-135 . 本站查看
6. 左权. 工作面液压支架自适应对齐控制系统设计及应用. 矿业装备. 2024(08): 106-108 . 百度学术
7. 曾庆良,班新亮,孟昭胜,万丽荣,雷小万. 基于Unity3D的工作面液压支架群组空间支护姿态数字孪生重构方法. 煤炭科学技术. 2024(11): 74-88 . 百度学术
8. 崔宽宽. 煤矿井下液压支架位姿监测装置. 机械制造. 2024(12): 86-88 . 百度学术
9. 王国法,张良,李首滨,李森,冯银辉,孟令宇,南柄飞,杜明,付振,李然,王峰,刘清,王丹丹. 煤矿无人化智能开采系统理论与技术研发进展. 煤炭学报. 2023(01): 34-53 . 百度学术
10. 文治国. 四柱支撑掩护式液压支架支护状态分析计算. 煤矿机械. 2023(04): 23-26 . 百度学术
11. 巩师鑫,赵国瑞,王飞. 机器视觉感知理论与技术在煤炭工业领域应用进展综述. 工矿自动化. 2023(05): 7-21 . 本站查看
12. 李建,任怀伟,巩师鑫. 综采工作面液压支架状态感知与分析技术研究. 工矿自动化. 2023(10): 1-7+103 . 本站查看
13. 任怀伟,李帅帅,赵国瑞,张科学,杜明,周杰. 基于深度视觉原理的工作面液压支架支撑高度与顶梁姿态角测量方法研究. 采矿与安全工程学报. 2022(01): 72-81+93 . 百度学术
14. 张帅,任怀伟,韩安,巩师鑫. 复杂条件工作面智能化开采关键技术及发展趋势. 工矿自动化. 2022(03): 16-25 . 本站查看
15. 鲍江峰. 液压支架协同方案设计. 机械管理开发. 2022(02): 9-11 . 百度学术
16. 乔佳伟,贾运红,王强. 基于改进粒子群算法的煤矿井下相机参数优化. 煤炭技术. 2022(04): 119-122 . 百度学术
17. 赵忠证,李元泽,张旭辉,毛清华. 纳林河二矿自动化综采工作面组织方式与产能优化. 陕西煤炭. 2022(03): 139-143 . 百度学术
18. 王裕,史艳楠,王毅颖,齐朋磊,王翰秋. 固体充填液压支架全位姿测量及虚拟仿真. 工矿自动化. 2022(07): 81-89 . 本站查看
19. 宋单阳,卢春贵,陶心雅,杨金衡,王培恩,郑文强,宋建成. 基于最大熵卡尔曼滤波算法的液压支架调直方法. 工矿自动化. 2022(11): 119-124 . 本站查看
20. 卢春贵,宋单阳,宋建成,许春雨,杨金衡. 基于捷联惯导的刮板输送机布置形态检测方法的研究. 煤炭技术. 2022(12): 205-208 . 百度学术
21. 葛世荣. 采煤机技术发展历程(九)——环境感知技术. 中国煤炭. 2021(02): 1-17 . 百度学术
22. 王宇卓,常宗旭,高飞,廉自生. 液压支架的调直方法研究. 机电工程. 2021(05): 645-649 . 百度学术
23. 廖华. 铲车自动计量系统溜井倒矿防作弊的设计与应用. 采矿技术. 2021(04): 147-149 . 百度学术
24. 程晋凯. 液压支架自适应对齐方案研究. 机械管理开发. 2021(07): 288-290 . 百度学术
25. 梁云峰,关伟,朱超,刘慧,张旭辉. 蒙大纳林河矿中厚煤层综采工作面智能化技术研究. 矿山机械. 2021(10): 12-15 . 百度学术
26. 荣耀,安晓宇. 智能化开采中视频信息的应用现状及展望. 煤炭科学技术. 2021(S1): 119-123 . 百度学术
27. 张超,张旭辉,杜昱阳,杨文娟,张楷鑫. 基于双目视觉的悬臂式掘进机位姿测量技术研究. 煤炭科学技术. 2021(11): 225-235 . 百度学术
28. 任怀伟,赵国瑞,周杰,文治国,丁艳,李帅帅. 智能开采装备全位姿测量及虚拟仿真控制技术. 煤炭学报. 2020(03): 956-971 . 百度学术
29. 屈霞,贡启明. 基于视觉测量的人防门位置检测方法. 计算机测量与控制. 2020(04): 57-61+109 . 百度学术
30. 张树楠,曹现刚,崔亚仲,罗璇,张国祯. 基于多传感器的液压支架直线度测量方法研究. 煤矿机械. 2020(04): 56-59 . 百度学术
31. 李帅帅,任怀伟. 综采工作面“三机”设备位姿测量技术研究现状与展望. 煤炭科学技术. 2020(09): 218-226 . 百度学术
32. 张凯,田原,贾曲. 机器视觉在煤机装备中的应用现状与趋势. 煤矿机械. 2020(12): 123-125 . 百度学术
33. 许金星. 机器视觉的液压支架姿态角度测量系统设计. 煤矿机械. 2019(09): 11-13 . 百度学术
其他类型引用(22)