基于5G的矿用装备远程控制技术研究

李晨鑫

李晨鑫. 基于5G的矿用装备远程控制技术研究[J]. 工矿自动化,2023,49(9):90-97. DOI: 10.13272/j.issn.1671-251x.18089
引用本文: 李晨鑫. 基于5G的矿用装备远程控制技术研究[J]. 工矿自动化,2023,49(9):90-97. DOI: 10.13272/j.issn.1671-251x.18089
LI Chenxin. Research on remote control technology of mining equipment based on 5G[J]. Journal of Mine Automation,2023,49(9):90-97. DOI: 10.13272/j.issn.1671-251x.18089
Citation: LI Chenxin. Research on remote control technology of mining equipment based on 5G[J]. Journal of Mine Automation,2023,49(9):90-97. DOI: 10.13272/j.issn.1671-251x.18089

基于5G的矿用装备远程控制技术研究

基金项目: 天地科技股份有限公司科技创新创业资金专项(2023-TD-ZD005-001,2022-TD-ZD001,2022-2-TD-ZD001)。
详细信息
    作者简介:

    李晨鑫(1986—),男,河南永城人,副研究员,博士,研究方向为智能矿山通信技术,E-mail:ccrilichenxin@126.com

  • 中图分类号: TD655.3

Research on remote control technology of mining equipment based on 5G

  • 摘要: 矿用5G为智能矿山建设提供了高速信息传输通道,基于5G的矿用装备远程控制应用是实现少人化、无人化矿井生产的关键手段。分析了矿用4G、WiFi6应用于矿用装备远程控制中的不足,指出5G技术是实现矿用装备远程控制的必要支撑手段。运用信息物理系统架构研究方法构建了基于5G的矿用装备远程控制应用系统参考架构。以5G+采煤机远程控制为例,研究了5G传输链路的关键技术,梳理了监视监测数据与远程控制数据的信息流。当前5G网络为层三通信方式,而矿用装备远程控制的控制系统与受控设备之间需要进行点对点层二通信,针对该问题,研究了层二隧道构建方法和5G LAN技术,建立了远程控制信息传输的稳定通道。针对现场监视数据的大带宽传输需求与远程控制数据的低时延传输需求,提出了资源预调度与请求调度灵活适配的空口资源分配机制。现场测试结果表明:通过层二隧道共传输数据包13 328个,未出现丢包或接收不成功的现象;端到端时延为11.5~23.8 ms,能够满足矿用装备远程控制的传输需求;RSRP(参考信号接收功率)分布在−93~−53 dB·m之间,SINR(信号与干扰加噪声比)分布在10~38 dB之间,无线覆盖情况良好。矿用5G无线通信系统的可靠性、端到端时延及无线覆盖情况能够满足采煤机远程控制的传输需求。
    Abstract: Mining 5G provides a high-speed information transmission channel for the construction of intelligent mines. The remote control application of mining equipment based on 5G is a key means to achieve less human and unmanned mine production. The paper analyzes the shortcomings of using 4G and WiFi6 in remote control of mining equipment, and points out that 5G technology is a necessary support method for achieving remote control of mining equipment. A reference architecture for remote control application system of mining equipment based on 5G is constructed using the research method of information physics system architecture. Taking 5G+coal mining machine remote control as an example, the key technologies of 5G transmission link are studied. The information flow between monitoring data and remote control data is sorted out. The current 5G network adopts a layer three communication method, and point-to-point layer two communication is required between the control system of remote control of mining equipment and the controlled equipment. In order to solve this problem, a layer two tunnel construction method and 5G LAN technology have been studied, and a stable channel for remote control information transmission has been established. In order to address the high bandwidth transmission requirements of on-site monitoring data and the low latency transmission requirements of remote control data, a flexible and adaptable over the air bandwidth allocation mechanism for resource pre-scheduling and request scheduling is proposed. The on-site test results show that a total of 13 328 data packets are transmitted through the layer two tunnel, without any packet loss or unsuccessful reception. The end-to-end delay is 11.5-23.8 ms, which can meet the transmission requirements of remote control of mining equipment. The RSRP(reference signal receiving power) distribution is between −93 dB·m and −53 dB·m, and the SINR(signal to interference plus noise ratio) distribution is between 10 dB and 38 dB, indicating good wireless coverage. The reliability, end-to-end delay, and wireless coverage of the mining 5G wireless communication system can meet the transmission requirements of remote control of shearers.
  • 5G,5.5G,WiFi6,WiFi7,UWB,ZigBee等矿井移动通信系统、人员和车辆定位系统等的研发和布置,需进行矿井无线传输特性分析,优选无线工作频段,优化无线通信基站和定位分站布置,在保证通信效果的前提下,减少无线通信基站和定位分站数量,降低系统成本和维护工作量[1-4]。国家标准GB/T 3836.1—2021《爆炸性环境 第1部分:设备 通用要求》[5]无线电波发射功率不得大于6 W的限制,制约了矿井无线传输距离,增加了无线通信基站和定位分站的用量,增大了系统建设成本和维护工作量[6-11]。在无线电波发射功率受限、接收灵敏度一定的情况下,选择衰减较小的无线传输频段,可有效提高单个无线通信基站和定位分站的无线信号覆盖范围,减小无线通信基站和定位分站的用量,降低系统建设成本和维护工作量[12-13]。目前通过理论分析和电磁仿真研究矿井无线传输衰减的较多,但误差较大;矿井现场测试分析的较少,难以满足优化无线工作频段及无线通信基站和定位分站布置的需求[14-16]。因此,笔者进行了350 MHz~6 GHz较大频率范围的煤矿井下无线传输测试,并对测试结果进行了分析研究,揭示了矿井无线传输特性,提出了煤矿井下无线通信系统(以下简称矿用无线通信系统)的优选工作频段。

    笔者于2023年6月在国家能源集团宁夏煤业有限责任公司羊场湾煤矿进行了350 MHz~6 GHz频段的无线传输测试,测试地点情况如下:① 宽度为5.5 m、高度为4.1 m的半圆拱形+矩形断面(以下简称半圆拱形断面)拐弯巷道,拐弯巷道的拐角为66°,测试长度为40 m,如图1(a)和图1(b)所示。② 宽度为5.5 m、高度为4.1 m的半圆拱形断面分支巷道,分支巷道为直角T字型,测试长度为40 m,如图1(a)和图1(c)所示。③ 宽度为5.6 m、高度为4.6 m的半圆拱形断面辅助运输大巷(以下简称辅运大巷1),平直段测试长度为410 m,如图1(d)所示。④ 宽度为3.8 m、高度为3.6 m的半圆拱形断面辅助运输大巷(以下简称辅运大巷2),平直段测试长度为200 m,如图1(e)所示。⑤ 宽度为5.4 m、高度为3.4 m的梯形断面掘进巷道,掘进巷道一侧安装有宽2 m的带式输送机,平直段测试长度为500 m,如图1(f)所示。⑥ 下底宽度为3.4 m、上底宽度为3.1 m、高度为1.7 m的梯形断面综采工作面,综采工作面平均坡度为10°,测试长度为98 m,如图1(g)所示。

    图  1  测试地点
    Figure  1.  Test sites

    测试设备:1台便携式射频信号发生器BPSG6,其发射频段为23.5 MHz~6 GHz,最大发射功率为+18 dBm;1台便携式实时频谱分析仪V6−RSA250X,其测量频段为10 MHz~6 GHz,最大实时带宽为80 MHz,显示平均噪声电平为−170 dBm/Hz;2根对数周期天线TN306,其工作频段为350 MHz~8 GHz,典型增益为6 dBi;1根长0.3 m的SMA射频馈线、1根长1 m的SMA射频馈线、2个高2.06 m的可伸缩三角支架和2台笔记本电脑。

    根据矿用5G,5.5G,WiFi6,WiFi7,UWB,ZigBee等矿井人员定位系统[17]、移动通信系统[18-21]、无线视频和无线传感器使用频段,无线传输测试频点选择350,433,550,700,800,900,1 300,1 700,1 900,2 100,2 400,2 600,3 300,3 500,4 200,4 900,5 400,6 000 MHz。

    矿井拐弯巷道、分支巷道、辅助运输大巷、掘进巷道、综采工作面的测试设备布置如图2所示。在无线发射端,将固定在可伸缩三脚架上的便携式射频信号发生器通过射频馈线与对数周期天线相连,并通过数据线与笔记本电脑连接,使用笔记本电脑上预装的Aaronia AG−HF Generator软件设置射频信号的频率和功率。在无线接收端,将便携式实时频谱分析仪通过射频馈线与对数周期天线连接,并通过数据线与笔记本电脑连接,使用笔记本电脑上预装的Aaronia RTSA−Suite PRO软件实时记录无线传输接收功率测试值。发射设备及发射天线固定不动,设定频率和发射功率为某一定值,沿巷道轴向移动接收设备及接收天线,并在每个测试点处测试100个数据取平均值,即为该测试点无线传输接收功率。

    图  2  测试设备布置
    Figure  2.  Test equipment layout

    发射设备及发射天线固定不动,收发天线均置于拐弯巷道断面中央,将便携式射频信号发生器的输出功率设置为+13 dBm。如图3所示,将发射天线置于巷道拐点前20 m处,并将接收天线分别置于拐点后4,8,12,16,20 m处(即收发天线分别相距24,28,32,36,40 m),测试不同频率和距离下无线传输接收功率,数据见表1,曲线如图4所示。

    图  3  拐弯巷道无线收发天线布置
    Figure  3.  Layout of wireless transmitting and receiving antenna in a curved roadway
    表  1  拐弯巷道中不同频率和距离下无线传输接收功率数据
    Table  1.  Received power data of wireless transmission at different frequencies and distances in a curved roadway
    收发
    天线
    距离/m
    无线传输接收功率/dBm
    350
    MHz
    433
    MHz
    550
    MHz
    700
    MHz
    800
    MHz
    900
    MHz
    1300
    MHz
    1700
    MHz
    1900
    MHz
    2100
    MHz
    2400
    MHz
    2600
    MHz
    3300
    MHz
    3500
    MHz
    4200
    MHz
    4900
    MHz
    5400
    MHz
    6000
    MHz
    24 −22.28 −22.82 −32.40 −35.15 −37.62 −42.91 −42.60 −41.86 −46.21 −51.59 −45.72 −46.04 −50.76 −51.58 −48.47 −50.90 −56.32 −56.32
    28 −22.20 −25.12 −32.24 −45.18 −34.56 −42.98 −54.95 −50.55 −45.21 −58.01 −49.25 −59.45 −60.23 −61.59 −61.76 −64.29 −63.21 −60.06
    32 −34.21 −40.98 −34.27 −38.93 −48.81 −47.36 −45.27 −59.60 −49.38 −62.11 −71.49 −55.17 −67.06 −60.63 −62.60 −75.08 −67.38 −74.03
    36 −40.55 −48.27 −45.66 −48.81 −45.17 −48.50 −50.72 −62.06 −59.00 −65.62 −62.13 −73.12 −66.40 −75.20 −69.70 −71.04 −69.24 −70.19
    40 −37.84 −32.15 −35.25 −61.54 −46.72 −49.25 −55.87 −65.36 −56.72 −65.15 −68.50 −67.28 −67.04 −71.11 −64.93 −69.70 −76.87 −72.05
    下载: 导出CSV 
    | 显示表格
    图  4  拐弯巷道中不同频率和距离下无线传输接收功率曲线
    Figure  4.  Received power curve of wireless transmission at different frequencies and distances in a curved roadway

    为了便于分析,将拐弯巷道中拐点后20 m内的无线传输接收功率数据按不同频率取平均值,得到拐弯巷道中不同频率下无线传输平均接收功率,见表2

    表  2  拐弯巷道中不同频率下无线传输平均接收功率
    Table  2.  Average received power of wireless transmissions at different frequencies in a curved roadway
    频率/MHz 无线传输
    平均接收功率/dBm
    频率/MHz 无线传输
    平均接收功率/dBm
    350 −31.42 2 100 −60.50
    433 −33.87 2 400 −59.42
    550 −35.96 2 600 −60.21
    700 −45.92 3 300 −62.30
    800 −42.58 3 500 −64.02
    900 −46.20 4 200 −61.49
    1 300 −49.88 4 900 −66.20
    1 700 −55.89 5 400 −66.60
    1 900 −51.30 6 000 −66.53
    下载: 导出CSV 
    | 显示表格

    表1表2图4可知,从整体趋势来看,在350 MHz~6 GHz频段,无线传输频率越高,拐弯巷道的平均接收功率越低,即频率越低,拐弯巷道的无线传输衰减越小。拐弯巷道在350 MHz~900 MHz频段的无线传输平均接收功率最大,拐弯巷道中的无线传输平均接收功率最大值为−31.42 dBm(对应频率为350 MHz),在350 MHz~900 MHz频段的无线传输平均接收功率为−39.33 dBm。因此,在350 MHz~6 GHz频段,拐弯巷道中矿用无线通信系统的无线工作频段应优选350 MHz~900 MHz。

    发射设备及发射天线固定不动,收发天线均置于分支巷道断面中央,将便携式射频信号发生器的输出功率设置为+13 dBm。分支巷道的无线传输测试分为支巷发射和主巷发射2种测试。① 支巷发射测试:将发射天线置于距分支点20 m的支巷道中,如图5(a)所示,接收天线分别置于距分支点4,8,12,16,20 m的主巷道中(即收发天线分别相距24,28,32,36,40 m),测试不同频率和距离下无线传输接收功率,数据见表3,曲线如图6所示。② 主巷发射测试:将发射天线置于距分支点20 m的主巷道中,如图5(b)所示,接收天线分别置于距分支点4,8,12,16,20 m的支巷道中(即收发天线分别相距24,28,32,36,40 m),测试不同频率和距离下无线传输接收功率,数据见表4,曲线如图7所示。

    图  5  分支巷道无线收发天线布置
    Figure  5.  Layout of wireless transmitting and receiving antenna in a branch roadway
    表  3  支巷发射时分支巷道不同频率和距离下无线传输接收功率数据
    Table  3.  Received power data of wireless transmission at different frequencies and distances in a branch roadway with transmitting equipment in a split roadway
    收发
    天线
    距离/m
    无线传输接收功率/dBm
    350
    MHz
    433
    MHz
    550
    MHz
    700
    MHz
    800
    MHz
    900
    MHz
    1300
    MHz
    1700
    MHz
    1900
    MHz
    2100
    MHz
    2400
    MHz
    2600
    MHz
    3300
    MHz
    3500
    MHz
    4200
    MHz
    4900
    MHz
    5400
    MHz
    6000
    MHz
    24 −35.99 −24.06 −32.52 −38.29 −37.34 −41.62 −56.66 −35.73 −41.53 −56.73 −49.38 −47.26 −50.90 −47.12 −46.31 −48.80 −61.25 −56.25
    28 −32.29 −27.52 −30.38 −49.04 −44.61 −43.36 −45.69 −53.94 −53.64 −47.57 −56.76 −47.23 −67.48 −52.89 −58.82 −56.88 −62.55 −69.30
    32 −33.11 −31.06 −43.47 −50.32 −48.58 −45.68 −50.07 −58.09 −59.59 −59.33 −67.01 −57.71 −67.10 −64.37 −67.49 −65.69 −65.94 −66.59
    36 −36.68 −38.25 −43.78 −47.44 −43.86 −49.38 −53.87 −58.77 −54.76 −61.33 −71.02 −61.45 −68.94 −65.70 −72.55 −70.06 −68.10 −74.35
    40 −39.07 −38.04 −48.29 −50.03 −53.87 −58.54 −58.87 −66.02 −64.92 −67.78 −75.75 −65.23 −78.82 −72.98 −70.17 −88.03 −70.94 −74.19
    下载: 导出CSV 
    | 显示表格
    图  6  支巷发射时分支巷道不同频率和距离下无线传输接收功率曲线
    Figure  6.  Received power curve of wireless transmission at different frequencies and distances in a branch roadway with transmitting equipment in a split roadway

    为便于分析,将分支巷道中分支点后20 m内的无线传输接收功率数据按不同频率取平均值,分别得到支巷发射和主巷发射时分支巷道不同频率下无线传输平均接收功率,见表5

    表3表5图6可知,从整体趋势来看,在350 MHz~6 GHz频段内,在支巷发射的分支巷道中,无线传输频率越高,平均接收功率越低,即频率越低,无线传输衰减越小。支巷发射时分支巷道在350 MHz~900 MHz频段的无线传输平均接收功率最大,支巷发射时分支巷道中的无线传输平均接收功率最大值为−31.79 dBm(对应频率为433 MHz),在350 MHz~900 MHz频段的无线传输平均接收功率为−41.22 dBm。因此,在350 MHz~6 GHz频段内,支巷发射的分支巷道中矿用无线通信系统的工作频段应优选350 MHz~900 MHz。

    表  4  主巷发射时分支巷道不同频率和距离下无线传输接收功率数据
    Table  4.  Received power data of wireless transmission at different frequencies and distances in a branch roadway with transmitting equipment in a main roadway
    收发
    天线
    距离/m
    无线传输接收功率/dBm
    350
    MHz
    433
    MHz
    550
    MHz
    700
    MHz
    800
    MHz
    900
    MHz
    1300
    MHz
    1700
    MHz
    1900
    MHz
    2100
    MHz
    2400
    MHz
    2600
    MHz
    3300
    MHz
    3500
    MHz
    4200
    MHz
    4900
    MHz
    5400
    MHz
    6000
    MHz
    24 −32.45 −29.13 −37.34 −51.59 −46.13 −43.63 −34.52 −56.16 −45.59 −45.07 −58.16 −60.65 −54.62 −54.58 −49.42 −57.12 −54.99 −53.00
    28 −41.37 −37.00 −42.61 −47.94 −57.57 −45.77 −51.76 −56.48 −56.06 −63.36 −61.58 −64.74 −61.74 −57.40 −60.39 −76.91 −59.36 −63.17
    32 −32.71 −36.42 −40.75 −52.02 −57.59 −52.03 −50.94 −48.91 −49.96 −54.91 −65.85 −68.14 −71.12 −62.02 −60.43 −71.24 −73.88 −63.52
    36 −44.05 −33.22 −60.76 −46.13 −49.06 −46.04 −55.97 −67.89 −55.64 −76.82 −64.63 −66.53 −69.98 −67.52 −69.34 −70.69 −82.48 −73.71
    40 −43.41 −42.05 −57.47 −60.01 −62.31 −63.70 −63.66 −60.56 −65.00 −65.90 −63.97 −69.90 −70.66 −75.86 −70.16 −75.49 −78.04 −77.17
    下载: 导出CSV 
    | 显示表格
    图  7  主巷发射时分支巷道不同频率和距离下无线传输接收功率曲线
    Figure  7.  Received power curve of wireless transmission at different frequencies and distances in a branch roadway with transmitting equipment in a main roadway
    表  5  分支巷道不同频率下无线传输平均接收功率
    Table  5.  Average received power of wireless transmissions at different frequencies in a branch roadway
    频率/
    MHz
    支巷发射时
    分支巷道中
    无线传输
    平均接收
    功率/dBm
    主巷发射时
    分支巷道中
    无线传输
    平均接收
    功率/dBm
    频率/
    MHz
    支巷发射时
    分支巷道中
    无线传输
    平均接收
    功率/dBm
    主巷发射时
    分支巷道中
    无线传输
    平均接收
    功率/dBm
    350 −35.43 −38.80 2100 −58.55 −61.21
    433 −31.79 −35.56 2400 −63.98 −62.84
    550 −39.69 −47.79 2600 −55.78 −65.99
    700 −47.02 −51.54 3300 −66.65 −65.62
    800 −45.65 −54.53 3500 −60.61 −63.48
    900 −47.72 −50.23 4200 −63.07 −61.95
    1300 −53.03 −51.37 4900 −65.89 −70.29
    1700 −54.51 −58.00 5400 −65.76 −69.75
    1900 −54.89 −54.45 6000 −68.14 −66.11
    下载: 导出CSV 
    | 显示表格

    表4表5图7可知,从整体趋势来看,在350 MHz~6 GHz频段内,在主巷发射的分支巷道中,无线传输频率越高,平均接收功率越低,即频率越低,无线传输衰减越小。主巷发射时分支巷道在350 MHz~1 900 MHz频段的无线传输平均接收功率最大,主巷发射时分支巷道中的无线传输平均接收功率最大值为−35.56 dBm(对应频率为433 MHz),在350 MHz~1 900 MHz频段的无线传输平均接收功率为−49.14 dBm。因此,在350 MHz~6 GHz频段内,主巷发射的分支巷道中矿用无线通信系统的工作频段应优选350 MHz~1 900 MHz。

    综合考虑主巷发射和支巷发射时分支巷道中的无线传输衰减,分支巷道中矿用无线通信系统的工作频段应优选350 MHz~900 MHz。

    发射设备及发射天线固定不动,收发天线均置于与拐弯、分支巷道断面相同的平直巷道断面中央,设置便携式射频信号发生器的输出功率为+13 dBm。将接收天线分别置于距离发射天线24,28,32,36,40 m处,测试得到平直巷道中不同频率和距离下无线传输接收功率,并将平直巷道中的无线传输接收功率数据按不同频率取平均值,得到平直巷道中不同频率和距离下无线传输平均接收功率,见表6

    为便于比较分析,分别将相同断面和长度的拐弯巷道、分支巷道和平直巷道中的无线传输接收功率数据取平均值,得到拐弯巷道、分支巷道和平直巷道中不同频率下无线传输平均接收功率,如图8所示。在350 MHz~6 GHz频段,平直巷道中的无线传输平均接收功率为−39.93 dBm,拐弯巷道中的无线传输平均接收功率为−53.35 dBm,支巷发射的分支巷道中的无线传输平均接收功率为−54.34 dBm,主巷发射的分支巷道中的无线传输平均接收功率为−57.20 dBm,无线传输平均接收功率依次减小,无线传输衰减依次增大。即在巷道断面相同的情况下,平直巷道中的无线传输衰减小于拐弯巷道和分支巷道;拐弯巷道中的无线传输衰减小于分支巷道;支巷发射的分支巷道中的无线传输衰减小于主巷发射的分支巷道。巷道拐弯和分支均增加了无线传输衰减。因此,无线通信基站和定位分站及其天线应设置在拐弯巷道的拐点和分支巷道的分支点,以减小巷道拐弯和分支对无线传输的影响。

    表  6  平直巷道中不同频率和距离下无线传输接收功率
    Table  6.  Received power of wireless transmission at different frequencies and distances in a straight roadway
    收发
    天线
    距离/m
    无线传输接收功率/dBm
    350
    MHz
    433
    MHz
    550
    MHz
    700
    MHz
    800
    MHz
    900
    MHz
    1300
    MHz
    1700
    MHz
    1900
    MHz
    2100
    MHz
    2400
    MHz
    2600
    MHz
    3300
    MHz
    3500
    MHz
    4200
    MHz
    4900
    MHz
    5400
    MHz
    6000
    MHz
    24−18.34−20.49−20.47−27.64−33.14−33.21−37.67−41.62−33.66−37.94−56.94−38.67−48.72−39.26−72.71−49.75−54.59−45.46
    28−22.52−15.93−25.41−23.17−30.45−39.83−36.07−44.59−37.21−40.25−41.45−38.22−46.69−55.20−43.07−45.60−49.32−47.99
    32−21.36−21.09−23.64−27.71−25.27−33.57−45.50−41.68−41.28−63.74−53.05−38.81−63.47−46.80−54.36−46.00−56.70−53.44
    36−18.23−24.37−26.31−28.55−30.34−35.08−39.46−43.34−39.82−40.71−47.55−43.74−44.07−48.51−43.67−49.65−51.22−49.94
    40−21.80−19.99−27.85−27.22−28.29−31.91−48.94−40.60−34.16−45.92−46.68−50.03−49.29−42.23−50.14−77.09−52.49−44.22
    平均接收
    功率/dBm
    −20.45−20.37−24.74−26.86−29.50−34.72−41.53−42.37−37.23−45.71−49.13−41.89−50.45−46.40−52.79−53.62−52.86−48.21
    下载: 导出CSV 
    | 显示表格
    图  8  拐弯巷道、分支巷道和平直巷道中不同频率下无线传输平均接收功率曲线
    Figure  8.  Average received power curve of wireless transmission at different frequencies in a curved, branch and straight roadways

    发射设备及发射天线固定不动,收发天线均置于辅运大巷1断面中央,设置便携式射频信号发生器的输出功率为+13 dBm。将接收天线分别置于距离发射天线1,3,5,10,30,50,70,90,110,130,150,170,190,210,230,250,270,290,310,330,350,370,390,410 m处,测试不同频率和距离下无线传输接收功率,数据见表7,曲线如图9所示。

    表  7  辅运大巷1中不同频率和距离下无线传输接收功率数据
    Table  7.  Received power data of radio transmission at different frequencies and distances in auxiliary transport roadway 1
    收发
    天线
    距离/m
    无线传输接收功率/dBm
    350
    MHz
    433
    MHz
    550
    MHz
    700
    MHz
    800
    MHz
    900
    MHz
    1300
    MHz
    1700
    MHz
    1900
    MHz
    2100
    MHz
    2400
    MHz
    2600
    MHz
    3300
    MHz
    3500
    MHz
    4200
    MHz
    4900
    MHz
    5400
    MHz
    6000
    MHz
    1 −14.58 −18.33 −18.66 −19.33 −39.92 −42.72 −21.18 −21.04 −20.27 −19.78 −20.62 −19.03 −22.82 −22.07 −22.74 −23.42 −26.96 −22.42
    3 −11.25 −18.50 −23.41 −16.63 −14.48 −18.55 −25.61 −25.21 −23.01 −30.11 −25.61 −26.76 −28.25 −31.66 −30.89 −31.24 −34.18 −30.07
    5 −13.70 −14.60 −21.19 −19.29 −25.63 −17.87 −28.85 −30.59 −26.69 −30.16 −28.18 −28.90 −37.04 −32.77 −32.91 −39.24 −41.72 −33.14
    10 −21.20 −17.46 −20.77 −30.70 −22.75 −33.45 −26.89 −41.36 −30.35 −42.20 −53.86 −43.84 −36.18 −44.89 −47.46 −37.30 −51.37 −46.68
    30 −41.03 −16.16 −21.92 −38.79 −31.29 −35.85 −36.44 −35.82 −36.37 −41.71 −44.27 −40.24 −43.50 −46.59 −51.08 −52.64 −46.49 −45.64
    50 −31.20 −19.92 −35.25 −28.75 −32.30 −35.56 −45.02 −45.77 −43.11 −36.09 −50.82 −46.44 −56.57 −48.92 −46.98 −48.15 −60.87 −61.45
    70 −30.14 −25.71 −28.91 −38.29 −36.62 −36.01 −45.10 −43.09 −50.50 −44.81 −50.74 −50.15 −49.44 −46.45 −53.23 −52.10 −50.12 −44.82
    90 −37.50 −29.78 −34.36 −34.48 −37.30 −39.91 −42.57 −48.70 −47.24 −53.42 −54.93 −55.67 −53.29 −58.60 −46.88 −48.23 −61.16 −56.65
    110 −44.20 −36.51 −40.81 −38.16 −39.68 −41.29 −40.80 −52.56 −46.25 −54.16 −58.60 −54.27 −51.43 −52.54 −50.38 −54.39 −60.18 −57.51
    130 −48.33 −36.12 −39.70 −38.09 −40.49 −46.83 −45.49 −42.61 −52.57 −53.51 −54.05 −51.72 −58.54 −51.77 −59.83 −54.92 −61.72 −60.07
    150 −53.51 −41.79 −43.44 −39.23 −38.78 −41.23 −47.21 −46.86 −51.09 −49.73 −54.06 −52.46 −72.57 −55.06 −63.98 −61.40 −67.39 −56.96
    170 −58.66 −46.34 −43.02 −39.67 −41.44 −43.96 −45.61 −46.00 −45.34 −48.36 −52.39 −52.67 −65.97 −57.56 −61.50 −63.96 −65.06 −64.44
    190 −60.40 −47.56 −45.00 −43.56 −42.47 −42.76 −50.27 −53.34 −48.85 −52.78 −55.35 −52.78 −64.40 −55.91 −68.19 −61.13 −58.29 −58.05
    210 −64.17 −47.13 −47.22 −41.22 −50.13 −44.07 −48.15 −50.28 −50.75 −50.23 −51.44 −50.42 −55.78 −58.97 −65.31 −59.76 −64.02 −63.56
    230 −66.72 −50.17 −46.80 −42.36 −41.30 −42.67 −46.00 −52.38 −50.18 −58.53 −52.88 −49.58 −57.95 −53.81 −66.03 −60.59 −68.02 −69.48
    250 −70.91 −53.76 −49.18 −41.91 −43.76 −44.48 −45.13 −49.76 −48.26 −55.34 −61.82 −55.46 −59.62 −51.25 −64.03 −69.25 −72.77 −58.58
    270 −75.07 −56.71 −50.31 −44.35 −41.89 −43.36 −47.85 −48.45 −48.10 −51.90 −59.29 −55.46 −61.17 −65.78 −57.22 −60.92 −61.29 −61.47
    290 −77.84 −57.31 −54.54 −44.49 −46.12 −46.92 −50.54 −49.68 −48.02 −49.79 −54.73 −54.19 −56.81 −62.94 −59.96 −57.40 −62.10 −62.82
    310 −81.64 −61.52 −52.73 −46.22 −43.93 −44.68 −49.30 −50.12 −51.23 −53.82 −52.26 −50.43 −55.49 −59.30 −55.97 −61.10 −61.19 −61.80
    330 −82.00 −62.32 −58.79 −48.88 −46.52 −47.79 −48.64 −51.14 −50.25 −57.70 −55.87 −54.59 −58.07 −55.11 −57.48 −57.53 −62.35 −66.88
    350 −82.93 −65.78 −56.82 −48.70 −47.81 −48.78 −49.57 −52.05 −50.03 −55.91 −61.41 −55.79 −62.26 −58.83 −55.76 −57.60 −67.10 −64.69
    370 −84.90 −70.64 −62.62 −49.15 −48.90 −50.20 −49.31 −54.30 −53.62 −55.54 −70.89 −62.80 −56.92 −57.09 −53.74 −56.79 −60.03 −63.74
    390 −84.97 −71.01 −61.15 −50.16 −49.05 −48.94 −52.25 −54.11 −51.56 −56.53 −62.73 −63.44 −57.85 −55.90 −54.20 −56.42 −61.75 −66.43
    410 −85.36 −71.44 −67.62 −59.75 −49.60 −51.17 −50.56 −52.76 −56.44 −60.01 −63.76 −68.23 −66.33 −55.17 −55.06 −57.03 −57.53 −57.48
    下载: 导出CSV 
    | 显示表格
    图  9  辅运大巷1中不同频率和距离下无线传输接收功率曲线
    Figure  9.  Received power curve of wireless transmission at different frequencies and distances in auxiliary transport roadway 1

    为便于分析,将辅运大巷1中距发射天线前410 m的无线传输接收功率数据按不同频率取平均值,得到辅运大巷1中不同频率下无线传输平均接收功率,见表8

    表  8  辅运大巷1中不同频率下无线传输平均接收功率
    Table  8.  Average received power of radio transmissions at different frequencies in auxiliary transport roadway 1
    频率/MHz 无线传输平均
    接收功率/dBm
    频率/MHz 无线传输平均
    接收功率/dBm
    350 −55.09 2100 −48.42
    433 −43.19 2400 −52.11
    550 −42.68 2600 −49.81
    700 −39.26 3300 −53.68
    800 −39.67 3500 −51.62
    900 −41.21 4200 −53.37
    1300 −43.26 4900 −53.44
    1700 −45.75 5400 −57.65
    1900 −45.00 6000 −55.62
    下载: 导出CSV 
    | 显示表格

    表7表8图9可知,在350 MHz~6 GHz频段内,辅运大巷1中700 MHz~900 MHz频段的无线传输平均接收功率最大,辅运大巷1中的无线传输平均接收功率最大值为−39.26 dBm(对应频率为700 MHz),在700 MHz~900 MHz频段的无线传输平均接收功率为−40.05 dBm。因此,在辅运大巷1中矿用无线通信系统的工作频段应优选700 MHz~900 MHz。

    发射设备及发射天线固定不动,收发天线均置于辅运大巷2断面中央,设置便携式射频信号发生器的输出功率为+13 dBm。将接收天线分别置于距离发射天线1,3,5,10,20,30,40,50,70,80,90,100,110,120,130,140,150,160,170,180,190,200 m处,测试不同频率和距离下无线传输接收功率,数据见表9,曲线如图10所示。

    表  9  辅运大巷2中不同频率和距离下无线传输接收功率数据
    Table  9.  Received power data of wireless transmission at different frequencies and distances in auxiliary transport roadway 2
    收发
    天线
    距离/m
    无线传输接收功率/dBm
    350
    MHz
    433
    MHz
    550
    MHz
    700
    MHz
    800
    MHz
    900
    MHz
    1300
    MHz
    1700
    MHz
    1900
    MHz
    2100
    MHz
    2400
    MHz
    2600
    MHz
    3300
    MHz
    3500
    MHz
    4200
    MHz
    4900
    MHz
    5400
    MHz
    6000
    MHz
    1 −14.38 −18.35 −23.20 −23.73 −21.78 −24.44 −25.16 −24.83 −24.45 −22.17 −22.13 −20.63 −22.60 −21.31 −21.64 −22.66 −26.43 −21.81
    3 −11.11 −21.49 −23.23 −23.90 −21.63 −23.88 −21.94 −24.96 −25.20 −29.90 −26.70 −29.34 −33.84 −30.47 −31.13 −31.31 −37.58 −31.82
    5 −11.22 −18.35 −23.39 −20.74 −20.80 −23.96 −41.17 −29.19 −31.19 −29.69 −34.68 −29.07 −31.76 −39.34 −35.42 −35.08 −38.69 −34.55
    10 −18.12 −16.47 −20.72 −22.07 −20.16 −22.18 −27.53 −32.27 −31.45 −38.31 −44.81 −36.38 −38.13 −47.16 −36.26 −42.83 −42.17 −44.55
    20 −22.15 −24.71 −21.04 −27.47 −28.57 −40.05 −36.16 −34.17 −34.15 −35.27 −39.04 −39.93 −48.68 −42.57 −43.14 −50.97 −43.55 −50.97
    30 −27.06 −26.10 −26.10 −25.16 −25.66 −29.47 −54.14 −43.19 −45.00 −38.90 −43.05 −34.05 −49.52 −49.84 −44.98 −42.61 −50.41 −48.54
    40 −36.21 −37.00 −33.27 −29.72 −28.97 −32.30 −43.30 −40.03 −35.83 −47.12 −49.74 −47.27 −47.29 −65.30 −62.23 −56.13 −48.12 −46.95
    50 −37.05 −53.62 −38.99 −33.22 −38.59 −35.34 −40.25 −34.80 −36.98 −47.42 −43.84 −45.69 −49.05 −44.21 −45.81 −50.53 −56.92 −61.68
    70 −48.41 −48.21 −46.65 −37.76 −46.57 −44.66 −37.46 −50.99 −42.66 −48.39 −44.43 −45.75 −58.21 −51.74 −51.65 −53.56 −56.35 −54.70
    80 −53.85 −51.44 −48.96 −43.14 −37.09 −44.71 −37.22 −41.94 −42.41 −43.81 −55.21 −42.03 −51.67 −50.92 −55.86 −56.22 −66.26 −60.74
    90 −67.00 −62.22 −45.80 −41.90 −42.76 −39.75 −44.05 −45.36 −41.85 −46.43 −56.86 −47.52 −74.74 −54.73 −71.95 −58.34 −58.18 −50.20
    100 −71.48 −62.66 −55.62 −42.91 −48.20 −43.37 −41.32 −40.35 −42.98 −49.55 −49.87 −52.20 −52.44 −46.05 −52.75 −59.49 −59.44 −58.91
    110 −71.39 −63.25 −59.02 −55.99 −43.49 −48.24 −39.95 −44.29 −41.70 −52.04 −49.57 −46.88 −51.80 −52.33 −49.06 −53.56 −59.86 −63.01
    120 −82.03 −66.47 −57.63 −56.39 −44.51 −43.85 −42.42 −41.39 −44.50 −45.01 −48.94 −47.88 −52.04 −52.47 −51.85 −53.15 −66.64 −54.70
    130 −78.15 −72.70 −61.52 −59.38 −47.16 −48.48 −53.92 −43.12 −42.96 −46.58 −50.32 −47.03 −53.64 −51.43 −54.14 −59.49 −63.29 −56.01
    140 −83.74 −77.96 −65.27 −57.40 −55.81 −47.86 −48.15 −44.04 −44.55 −45.86 −51.88 −48.01 −55.59 −54.75 −58.06 −57.81 −60.25 −57.75
    150 −83.90 −74.07 −65.87 −55.04 −51.16 −47.62 −48.77 −46.36 −47.51 −46.60 −49.06 −47.08 −54.04 −51.64 −58.24 −56.12 −57.13 −64.00
    160 −83.36 −80.56 −67.56 −59.54 −49.49 −48.12 −49.15 −46.76 −45.28 −51.55 −48.28 −45.72 −53.18 −49.80 −55.58 −61.83 −58.66 −57.28
    170 −84.43 −86.00 −69.57 −66.17 −51.34 −49.14 −48.60 −45.12 −44.94 −49.32 −50.37 −49.11 −52.40 −51.55 −55.19 −59.66 −63.65 −58.34
    180 −88.55 −83.52 −73.59 −71.27 −51.89 −51.40 −47.34 −48.47 −45.82 −50.02 −51.25 −49.07 −53.88 −52.05 −63.03 −56.64 −63.13 −56.88
    190 −86.83 −87.55 −78.42 −65.44 −56.53 −53.43 −45.78 −49.29 −47.26 −50.41 −48.66 −47.98 −54.43 −51.68 −55.56 −58.83 −65.83 −58.14
    200 −82.54 −85.92 −74.96 −64.43 −61.27 −54.55 −48.60 −50.56 −50.12 −54.76 −51.76 −48.34 −55.19 −52.24 −54.51 −58.61 −64.82 −66.09
    下载: 导出CSV 
    | 显示表格
    图  10  辅运大巷2中不同频率和距离下无线传输接收功率曲线
    Figure  10.  Received power curve of wireless transmission at different frequencies and distances in auxiliary transport roadway 2

    为了便于分析,将辅运大巷2中距发射天线前200 m的无线传输接收功率数据按不同频率取平均值,得到辅运大巷2中不同频率下无线传输平均接收功率,见表10

    表  10  辅运大巷2中不同频率下无线传输平均接收功率
    Table  10.  Average received power of wireless transmissions at different frequencies in auxiliary transport roadway 2
    频率/MHz 无线传输平均
    接收功率/dBm
    频率/MHz 无线传输平均
    接收功率/dBm
    350 −56.50 2100 −44.05
    433 −55.39 2400 −45.93
    550 −49.11 2600 −43.04
    700 −44.67 3300 −49.73
    800 −40.61 3500 −48.34
    900 −40.76 4200 −50.37
    1300 −41.93 4900 −51.61
    1700 −40.98 5400 −54.88
    1900 −40.40 6000 −52.62
    下载: 导出CSV 
    | 显示表格

    表9表10图10可知,在350 MHz~6 GHz频段内,辅运大巷2中800 MHz~1900 MHz频段的无线传输平均接收功率最大,700 MHz~2600 MHz频段的无线传输平均接收功率较大;辅运大巷2中的无线传输平均接收功率最大值为−40.40 dBm(对应频率为1900 MHz);在800 MHz~1 900 MHz频段的无线传输平均接收功率为−40.94 dBm,在700 MHz~2 600 MHz频段的无线传输平均接收功率为−42.49 dBm。因此,在辅运大巷2中矿用无线通信系统的工作频段应优选800 MHz~1 900 MHz或700 MHz~2 600 MHz。

    综合考虑辅运大巷1、辅运大巷2、巷道拐弯和分支的无线传输衰减,辅助运输大巷中矿用无线通信系统的工作频段应优选700 MHz~900 MHz。

    发射设备及发射天线固定不动,收发天线均置于掘进巷道断面中央,设置便携式射频信号发生器的输出功率为+13 dBm。将接收天线分别置于距离发射天线1,3,5,10,20,40,60,80,100,120,140,160,180,200,250,300,350,400,450,500 m处,测试不同频率和距离下无线传输接收功率,数据见表11,曲线如图11所示。

    表  11  掘进巷道中不同频率和距离下无线传输接收功率数据
    Table  11.  Received power data of wireless transmission at different frequencies and distances in an excavation roadway
    收发
    天线
    距离/m
    无线传输接收功率/dBm
    350 MHz 433 MHz 550 MHz 700 MHz 800 MHz 900 MHz 1300
    MHz
    1700
    MHz
    1900
    MHz
    2100
    MHz
    2400
    MHz
    2600
    MHz
    3300
    MHz
    3500
    MHz
    4200
    MHz
    4900
    MHz
    5400
    MHz
    6000
    MHz
    1 −14.32 −13.64 −29.77 −23.69 −17.12 −24.24 −25.01 −25.04 −24.35 −25.56 −21.40 −23.48 −19.54 −19.69 −17.91 −18.05 −22.80 −21.13
    3 −13.31 −15.30 −23.42 −23.89 −20.65 −24.63 −22.59 −23.41 −22.02 −23.84 −35.26 −28.72 −34.79 −30.16 −29.14 −31.23 −36.22 −32.53
    5 −14.78 −18.64 −21.32 −24.17 −18.80 −28.86 −22.77 −31.07 −25.65 −31.80 −32.94 −28.89 −33.42 −32.05 −34.10 −35.49 −38.69 −34.50
    10 −14.77 −17.52 −25.22 −21.16 −20.72 −26.98 −27.91 −46.25 −26.93 −30.94 −36.96 −33.42 −37.86 −38.99 −34.88 −39.32 −40.09 −39.71
    20 −18.21 −19.64 −26.50 −21.22 −43.48 −28.84 −37.83 −36.00 −41.75 −41.30 −43.33 −36.66 −40.50 −46.12 −54.53 −44.77 −58.73 −45.85
    40 −31.98 −20.34 −31.83 −32.84 −48.24 −38.62 −37.69 −35.95 −49.67 −50.60 −49.04 −44.78 −46.20 −43.15 −47.94 −52.26 −60.17 −56.06
    60 −37.87 −30.51 −36.67 −28.73 −28.56 −38.05 −44.76 −32.88 −40.29 −43.00 −41.42 −42.11 −61.25 −63.79 −60.30 −48.24 −50.70 −61.30
    80 −55.84 −41.48 −42.97 −32.94 −37.83 −36.35 −52.79 −40.49 −40.25 −44.74 −54.49 −48.90 −57.90 −49.97 −67.96 −56.11 −60.91 −53.08
    100 −65.57 −46.48 −45.27 −39.32 −45.96 −42.74 −56.50 −48.13 −49.79 −46.71 −53.90 −46.36 −54.52 −53.27 −54.37 −67.14 −73.62 −57.64
    120 −65.76 −53.59 −48.69 −41.56 −40.54 −39.10 −52.04 −51.09 −55.91 −59.91 −61.86 −50.61 −63.75 −60.35 −73.41 −57.30 −58.64 −54.86
    140 −75.46 −53.26 −51.13 −39.21 −38.12 −43.48 −63.10 −67.30 −52.82 −57.01 −68.86 −58.60 −59.22 −49.77 −67.63 −70.56 −58.70 −55.41
    160 −81.27 −56.43 −53.68 −42.65 −42.49 −47.51 −45.37 −53.65 −54.75 −53.17 −64.95 −62.07 −56.58 −51.39 −58.49 −60.48 −66.11 −59.10
    180 −80.30 −65.60 −54.97 −47.23 −46.77 −44.64 −43.63 −43.86 −49.17 −53.22 −53.81 −53.83 −55.88 −65.31 −58.07 −58.71 −61.78 −63.71
    200 −84.75 −74.78 −57.04 −45.96 −49.66 −49.90 −46.76 −58.65 −47.33 −59.30 −58.41 −56.42 −59.42 −59.86 −59.29 −60.80 −68.02 −64.48
    250 −93.94 −83.46 −66.01 −52.53 −52.73 −58.50 −58.45 −58.71 −58.60 −60.79 −63.02 −59.11 −57.62 −59.28 −72.98 −69.16 −69.94 −63.78
    300 −97.02 −95.52 −75.08 −57.01 −55.67 −57.49 −55.28 −57.72 −53.45 −58.45 −59.87 −53.58 −58.67 −62.76 −74.47 −66.66 −74.26 −71.03
    350 −95.53 −100.33 −83.01 −64.47 −59.15 −60.35 −57.85 −57.29 −56.31 −55.93 −60.08 −66.81 −63.54 −59.53 −67.18 −72.27 −73.25 −71.68
    400 −95.46 −100.98 −93.89 −69.26 −62.64 −63.31 −60.43 −61.53 −60.96 −66.34 −70.60 −71.80 −64.42 −65.07 −72.81 −74.50 −68.89 −75.44
    450 −96.19 −99.01 −95.77 −76.39 −67.08 −66.13 −62.82 −61.24 −60.81 −71.64 −77.96 −64.77 −65.49 −64.66 −70.69 −73.70 −80.95 −84.38
    500 −95.11 −101.17 −99.95 −83.76 −80.35 −78.76 −73.08 −64.32 −69.74 −78.78 −81.82 −81.40 −76.22 −76.48 −76.35 −85.81 −90.66 −86.32
    下载: 导出CSV 
    | 显示表格
    图  11  掘进巷道中不同频率和距离下无线传输接收功率曲线
    Figure  11.  Received power curve of wireless transmission at different frequencies and distances in an excavation roadway

    为便于分析,将掘进巷道中距发射天线前500 m的无线传输接收功率数据按不同频率取平均值,得到掘进巷道中不同频率下无线传输平均接收功率,见表12

    表  12  掘进巷道中不同频率下无线传输平均接收功率
    Table  12.  Average received power of wireless transmission at different frequencies in an excavation roadway
    频率/MHz 无线传输平均
    接收功率/dBm
    频率/MHz 无线传输平均
    接收功率/dBm
    350 −61.37 2100 −50.65
    433 −55.38 2400 −54.50
    550 −53.11 2600 −50.62
    700 −43.40 3300 −53.34
    800 −43.83 3500 −52.58
    900 −44.92 4200 −57.62
    1300 −47.33 4900 −57.13
    1700 −47.73 5400 −60.66
    1900 −47.03 6000 −57.60
    下载: 导出CSV 
    | 显示表格

    表11表12图11可知,在350 MHz~6 GHz频段,掘进巷道在700 MHz~900 MHz频段的无线传输平均接收功率最大,掘进巷道中的无线传输平均接收功率最大值为−43.40 dBm(对应频率为700 MHz),在700 MHz~900 MHz频段的无线传输平均接收功率为−44.05 dBm。因此,在掘进巷道中矿用无线通信系统的工作频段应优选700 MHz~900 MHz。

    将收发天线置于距煤壁2.8 m、距液压支架立柱底部0.6 m、距综采工作面底部0.85 m的位置,将便携式射频信号发生器的输出功率设置为+13 dBm。接收天线分别置于距发射天线7.00,59.50,71.75,98.00 m处,测试不同频率和距离下无线传输接收功率,数据见表13,曲线如图12所示。

    为便于分析,将综采工作面中距发射天线前98 m的无线传输接收功率数据按不同频率取平均值,得到综采工作面中不同频率下无线传输平均接收功率,见表14

    表  13  综采工作面中不同频率和距离下无线传输接收功率数据
    Table  13.  Received power data of wireless transmission at different frequencies and distances in fully mechanized mining face
    收发
    天线
    距离/m
    无线传输接收功率/dBm
    350
    MHz
    433
    MHz
    550
    MHz
    700
    MHz
    800
    MHz
    900
    MHz
    1300
    MHz
    1700
    MHz
    1900
    MHz
    2100
    MHz
    2400
    MHz
    2600
    MHz
    3300
    MHz
    3500
    MHz
    4200
    MHz
    4900
    MHz
    5400
    MHz
    6000
    MHz
    7.00 −20.06 −22.84 −21.70 −22.88 −22.46 −21.56 −22.73 −26.05 −23.36 −26.55 −29.82 −23.37 −37.15 −30.41 −35.91 −38.40 −41.09 −39.90
    59.50 −51.86 −47.86 −49.91 −49.00 −55.39 −54.67 −52.76 −63.12 −61.29 −53.55 −58.16 −71.53 −70.60 −49.87 −53.92 −57.74 −68.58 −56.91
    71.75 −59.22 −54.54 −53.92 −51.17 −49.17 −52.92 −52.72 −65.82 −54.65 −56.78 −65.57 −65.34 −76.44 −65.57 −70.51 −64.95 −61.60 −59.20
    98.00 −69.49 −73.47 −63.20 −67.66 −64.41 −68.03 −65.03 −65.25 −63.10 −68.94 −64.87 −62.20 −65.38 −63.63 −72.63 −78.02 −79.40 −67.00
    下载: 导出CSV 
    | 显示表格
    图  12  综采工作面中不同频率和距离下无线传输接收功率曲线
    Figure  12.  Received power curve of wireless transmission at different frequencies and distances in fully mechanized mining face
    表  14  综采工作面中不同频率下无线传输平均接收功率
    Table  14.  Average received power of wireless transmission at different frequencies in fully mechanized mining face
    频率/MHz 无线传输平均
    接收功率/dBm
    频率/MHz 无线传输平均
    接收功率/dBm
    350 −50.16 2100 −51.46
    433 −49.68 2400 −54.61
    550 −47.18 2600 −55.61
    700 −47.68 3300 −62.39
    800 −47.86 3500 −52.37
    900 −49.30 4200 −58.24
    1300 −48.31 4900 −59.78
    1700 −55.06 5400 −62.67
    1900 −50.60 6000 −55.75
    下载: 导出CSV 
    | 显示表格

    表13表14图12可知,在350 MHz~6 GHz频段内,综采工作面在433 MHz~1 300 MHz频段的无线传输平均接收功率最大,综采工作面中的无线传输平均接收功率最大值为−47.18 dBm(对应频率为550 MHz),在433 MHz~1 300 MHz频段的无线传输平均接收功率为−48.34 dBm。因此,在综采工作面中矿用无线通信系统的工作频段应优选433 MHz~1 300 MHz。

    1) 拐弯巷道中频率越低,无线传输衰减越小,其中350 MHz~900 MHz频段的无线传输衰减最小,矿用无线通信系统的工作频段应优选350 MHz~900 MHz。

    2) 分支巷道中频率越低,无线传输衰减越小,其中350 MHz~900 MHz频段的无线传输衰减最小,矿用无线通信系统的工作频段应优选350 MHz~900 MHz。

    3) 辅助运输大巷中700 MHz~900 MHz频段的无线传输衰减最小,矿用无线通信系统的工作频段应优选700 MHz~900 MHz。

    4) 掘进巷道中700 MHz~900 MHz频段的无线传输衰减最小,矿用无线通信系统的工作频段应优选700 MHz~900 MHz。

    5) 综采工作面中433 MHz~1 300 MHz频段的无线传输衰减最小,矿用无线通信系统的工作频段应优选433 MHz~1 300 MHz。

    6) 综合考虑拐弯巷道、分支巷道、辅助运输大巷、掘进工作面、综采工作面的无线传输衰减,矿用无线通信系统的工作频段应优选700 MHz~900 MHz。

    7) 在巷道断面相同的情况下,拐弯巷道中的无线传输衰减小于分支巷道;支巷发射的分支巷道中的无线传输衰减小于主巷发射的分支巷道。巷道拐弯和分支均增加了无线传输衰减。为减小巷道拐弯和分支对无线传输的影响,无线通信基站和定位分站及其天线应设置在拐弯巷道的拐点和分支巷道的分支点。

    8) 研究成果已被中华人民共和国能源行业标准NB/T 11546—2024《煤矿用5G通信系统通用技术条件》、NB/T 11523—2024《煤矿用5G通信基站》和NB/T 11547—2024《煤矿用5G通信基站控制器》应用。

  • 图  1   基于5G的矿用装备远程控制应用系统参考架构研究方法

    Figure  1.   Research method of reference architecture of 5G based mine equipment remote control application system

    图  2   基于5G的矿用装备远程控制应用系统参考架构

    Figure  2.   Reference architecture of 5G based mine equipment remote control application system

    图  3   基于5G的采煤机远程控制信息流

    Figure  3.   Information flow of 5G based shearer remote control

    图  4   采用本地交换机的5G LAN链路

    Figure  4.   5G LAN link using local switch

    图  5   基于5G的矿用装备远程控制空口资源调度机制

    Figure  5.   Over the air bandwidth scheduling mechanism of 5G based mine equipment remote control

    图  6   端到端时延测试数据

    Figure  6.   Test data of end-to-end latency

    图  7   RSRP测试数据

    Figure  7.   Test data of RSRP

    图  8   SINR测试数据

    Figure  8.   Test data of SINR

  • [1] 孙继平. 煤矿智能化与矿用5G[J]. 工矿自动化,2020,46(8):1-7.

    SUN Jiping. Coal mine intelligence and mine-used 5G[J]. Industry and Mine Automation,2020,46(8):1-7.

    [2] 孙继平. 煤矿智能化与矿用5G和网络硬切片技术[J]. 工矿自动化,2021,47(8):1-6.

    SUN Jiping. Coal mine intelligence,mine 5G and network hard slicing technology[J]. Industry and Mine Automation,2021,47(8):1-6.

    [3] 王国法,赵国瑞,胡亚辉. 5G技术在煤矿智能化中的应用展望[J]. 煤炭学报,2020,45(1):16-23.

    WANG Guofa,ZHAO Guorui,HU Yahui. Application prospect of 5G technology in coal mine intelligence[J]. Journal of China Coal Society,2020,45(1):16-23.

    [4] 霍振龙. 矿井无线通信系统现状与发展趋势[J]. 工矿自动化,2022,48(6):1-5.

    HUO Zhenlong. Current situation and development trend of mine wireless communication system[J]. Journal of Mine Automation,2022,48(6):1-5.

    [5] 李晨鑫. 矿用5G通信演进技术研究[J]. 工矿自动化,2023,49(3):6-12.

    LI Chenxin. Research on mine 5G-advanced communication evolution technology[J]. Journal of Mine Automation,2023,49(3):6-12.

    [6] 王国法,张良,李首滨,等. 煤矿无人化智能开采系统理论与技术研发进展[J]. 煤炭学报,2023,48(1):34-53.

    WANG Guofa,ZHANG Liang,LI Shoubin,et al. Progresses in theory and technological development of unmanned smart mining system[J]. Journal of China Coal Society,2023,48(1):34-53.

    [7] 范京道,闫振国,李川. 基于5G技术的煤矿智能化开采关键技术探索[J]. 煤炭科学技术,2020,48(7):92-97.

    FAN Jingdao,YAN Zhenguo,LI Chuan. Exploration of intelligent coal mining key technology based on 5G technology[J]. Coal Science and Technology,2020,48(7):92-97.

    [8] 张凯隆. 智能化综采工作面全景视频远控技术研究及应用[J]. 中国煤炭,2023,49(2):70-81. DOI: 10.3969/j.issn.1006-530X.2023.02.009

    ZHANG Kailong. Research and application of panoramic video remote control technology for intelligent fully mechanized mining face[J]. China Coal,2023,49(2):70-81. DOI: 10.3969/j.issn.1006-530X.2023.02.009

    [9] 顾义东. 5G技术在煤矿掘进工作面运输系统中的应用[J]. 工矿自动化,2022,48(6):64-68. DOI: 10.13272/j.issn.1671-251x.17919

    GU Yidong. Application of 5G technology in coal mine heading face transportation system[J]. Journal of Mine Automation,2022,48(6):64-68. DOI: 10.13272/j.issn.1671-251x.17919

    [10] 孙继平,江嬴. 矿井车辆无人驾驶关键技术研究[J]. 工矿自动化,2022,48(5):1-5,31. DOI: 10.13272/j.issn.1671-251x.17947

    SUN Jiping,JIANG Ying. Research on key technologies of mine unmanned vehicle[J]. Journal of Mine Automation,2022,48(5):1-5,31. DOI: 10.13272/j.issn.1671-251x.17947

    [11] 李晨鑫,张立亚. 煤矿井下网联式自动驾驶技术研究[J]. 工矿自动化,2022,48(6):49-55. DOI: 10.13272/j.issn.1671-251x.17930

    LI Chenxin,ZHANG Liya. Research on the network connected automatic driving technology in underground coal mine[J]. Journal of Mine Automation,2022,48(6):49-55. DOI: 10.13272/j.issn.1671-251x.17930

    [12] 工业和信息化部. 工业和信息化部关于加强和规范2 400 MHz、5 100 MHz和5 800 MHz频段无线电管理有关事宜的通知[EB/OL]. (2021-09-08)[2023-03-10]. https://www.miit.gov.cn/zwgk/zcwj/wjfb/tz/art/2021/art_e4ae71252eab42928daf0ea620976e4e.html.

    Ministry of Industry and Information Technology. Ministry of Industry and Information Technology:notification of related matters for strengthening and standardizing radio management in the 2 400 MHz,5 100 MHz,and 5 800 MHz frequency bands[EB/OL]. (2021-09-08)[2023-03-10]. https://www.miit.gov.cn/zwgk/zcwj/wjfb/tz/art/2021/art_e4ae71252eab42928daf0ea620976e4e.html.

    [13]

    3GPP TS 38.211. 3rd generation partnership project; technical specification group radio access network; NR; physical channels and modulation (Release 17)[S

    [14]

    3GPP TS 38.212. 3rd generation partnership project; technical specification group radio access network; NR; multiplexing and channel coding (Release 17) [S

    [15]

    3GPP TS 38.213. 3rd generation partnership project; technical specification group radio access network; NR; physical layer procedures for control (Release 17) [S

    [16] 杨挺,刘亚闯,刘宇哲,等. 信息物理系统技术现状分析与趋势综述[J]. 电子与信息学报,2021,43(12):3393-3406.

    YANG Ting,LIU Yachuang,LIU Yuzhe,et al. Review on cyber-physical system:technology analysis and trends[J]. Journal of Electronics & Information Technology,2021,43(12):3393-3406.

    [17] 李克强. 智能网联汽车信息物理系统参考架构1.0发布[J]. 智能网联汽车,2019(6):66-69.

    LI Keqiang. Intelligent connected vehicle information physics system reference architecture 1.0 Release[J]. Intelligent Connected Vehicles,2019(6):66-69.

    [18]

    3GPP TS 22.104. 3rd generation partnership project; service requirements for cyber-physical control applications in vertical domains(Release 17)[S

    [19] 黄蓉,唐雄燕,裴郁杉,等. 5G工业专网架构和关键技术探讨[J]. 移动通信,2022,46(8):8-14.

    HUANG Rong,TANG Xiongyan,PEI Yushan,et al. Discussion on 5G industrial private network architecture and key technologies[J]. Mobile Communications,2022,46(8):8-14.

    [20]

    3GPP TS 38.321. 3rd generation partnership project; technical specification group radio access network; NR; medium access control (MAC) protocol specification (Release 17)[S

    [21] 李卫,孙雷,王健全,等. 面向工业自动化的5G与TSN协同关键技术[J]. 工程科学学报,2022,44(6):1044-1052.

    LI Wei,SUN Lei,WANG Jianquan,et al. Key technologies to enable 5G and TSN coordination for industrial automation[J]. Chinese Journal of Engineering,2022,44(6):1044-1052.

  • 期刊类型引用(3)

    1. 孙继平,彭铭. 室内电磁波传播衰减统计模型用于矿井的适用性研究. 工矿自动化. 2025(02): 1-8 . 本站查看
    2. 彭铭. 通用无线传输路径损耗统计模型用于矿井的适用性研究. 工矿自动化. 2025(04): 57-63+85 . 本站查看
    3. 李昀. 矿井Mesh无线多跳路径流内竞争分析及约束方法. 工矿自动化. 2025(04): 74-85 . 本站查看

    其他类型引用(0)

图(8)
计量
  • 文章访问数:  2181
  • HTML全文浏览量:  120
  • PDF下载量:  122
  • 被引次数: 3
出版历程
  • 收稿日期:  2023-03-19
  • 修回日期:  2023-09-07
  • 网络出版日期:  2023-09-26
  • 刊出日期:  2023-09-27

目录

/

返回文章
返回