Research on fully mechanized mining equipment removal planning during sequencing working face
-
摘要: 目前煤矿工作面综采设备搬家倒面计划主要依靠人工编制,工作量大,效率低,导致工期延长,且快速搬家倒面主要依赖高度机械化作业,少有对不同矿井之间或同一矿井不同工作面之间综采设备搬家倒面计划优化问题的研究。针对该问题,通过调研神东集团综采工作面近3 a开采情况,定义了工作面、设备、人员、时间等表征综采设备搬家倒面工作的关键参数,以最小化最大完工时间为目标函数,建立了综采设备搬家倒面计划编制数学模型;设计了求解该数学模型的遗传算法,采用考虑工作面、综采设备、施工队伍选择的三段编码方式,构建适应度函数,对表征工作面、综采设备、施工队伍的染色体进行选择、交叉、变异操作,并考虑最晚开采时间对染色体的合法性进行判断和调整,通过设置迭代次数终止算法搜索过程并输出结果;基于综采设备搬家倒面计划编制遗传算法,开发了基于B/S架构的综采设备搬家倒面计划管理系统,实现了综采工作面搬家倒面工作基础信息管理、综采设备搬家倒面计划编制等功能。实例表明:应用遗传算法可将神东集团2021年度11个综采工作面设备搬家倒面计划工期由103 d缩短至91 d,有效提高了综采设备搬家倒面计划编制效率及工程效率。Abstract: The current fully mechanized mining equipment removal plan during sequencing working face mainly depends on manual preparation. The large workload and low efficiency lead to the extension of the construction period. The quick removal mainly depends on a high degree of mechanized operations. There is little research on optimizing the fully mechanized mining equipment removal plan during sequencing working face between different mines or different working faces in the same mine. In order to solve this problem, by investigating the mining conditions of Shendong Group's fully mechanized mining equipment in recent three years, the key parameters such as working face, equipment, personnel, and time are defined, which characterize the fully mechanized mining equipment removal during sequencing working face. Taking minimizing the maximum completion time as the objective function, a mathematical model for the fully mechanized mining equipment removal planning during sequencing working face is established. A genetic algorithm is designed to solve the mathematical model. The three-segment coding method considering the selection of working face, fully mechanized mining equipment and construction team is adopted, and the fitness function is built. The chromosomes of working face, fully mechanized mining equipment and construction team are selected, crossed and mutated. Considering the latest mining time, the legitimacy of chromosomes is judged and adjusted. By setting the number of iterations, search process of the algorithm is terminated and outputs the results. Based on the genetic algorithm for the fully mechanized mining equipment removal planning during sequencing working face, a management system of the fully mechanized mining equipment removal plan during sequencing working face based on B/S architecture is developed. It has realized the functions of basic information management of fully mechanized working face removal during sequence working face, and fully mechanized mining equipment removal planning during sequencing working face. The example shows that the application of genetic algorithm can shorten the construction period of fully mechanized mining equipment removal of 11 fully mechanized working faces in Shendong Group in 2021 from 103 days to 91 days. The method effectively improves the fully mechanized mining equipment removal planning efficiency and engineering efficiency.
-
-
表 1 综采设备搬家倒面计划编制问题约束条件
Table 1 Constraint conditions of fully mechanized mining equipment removal planning during sequencing working face
公式 公式说明 $\displaystyle\sum\limits_{k = 1}^m { {a_{ik} } }= 1$ 1个工作面有多套设备可供选择,但只能选择其中的1套设备进行安装、回撤和开采 $\displaystyle\sum\limits_{l = 1}^q { {h_{il} } } = 1$ 1个工作面有多支施工队伍可供选择,但只能选择其中的1支施工队伍进行安装、回撤和开采 ${s_j} \geqslant \displaystyle\sum\limits_{k = 1}^m { {a_{ik} } } {a_{jk} }{b_{ijk} }{e_i} + {T_{ij} }$ 任意时刻,对于每套综采设备,只能服务于1个工作面 ${s_j} \geqslant \displaystyle\sum\limits_{l = 1}^q { {h_{il} } } {h_{jl} }{L_{ijl} }{e_i} + { {{T} }_{ij} }$ 任意时刻,对于每支施工队伍,只能服务于1个工作面 ${e_i} = {s_i} + \displaystyle\sum\limits_{ {{k} } = {\text{1} } }^{{m} } { {a_{ik} }{t_{ik} } }$ 综采设备的回撤结束时间等于设备开始安装时间加上工作面占用该设备的时间 ${s}_{i}\geqslant 0,{{e} }_{i}\geqslant 0$ 综采设备开始安装时间和回撤结束时间必须非负 $ {C_{\max }} \geqslant {e_i} $ 工作面综采设备回撤结束时间不大于最大完工时间 表 2 算法配置表
Table 2 Algorithm configuration table
名称 类型 描述 config_id int 算法配置编号 config_name varchar 配置名称 cross_pro varchar 交叉概率 mutation_pro varchar 变异概率 pop_num int 种群大小 iterate_num int 迭代次数 remark varchar 备注 表 3 搬家倒面计划表
Table 3 Fully mechanized mining equipment removal plan table during sequencing working face
名称 类型 描述 plan_id int 计划编号 create_time datetime 计划创建时间 status varchar 计划执行状态 start_time datetime 开始时间 end_time datetime 结束时间 work_time varchar 工期 remark varchar 备注 -
[1] 王梁,李杰. 新型智能变频牵引绞车研制与应用[J]. 煤炭科学技术,2022,50(4):277-284. DOI: 10.13199/j.cnki.cst.2020-0605 WANG Liang,LI Jie. Development and application of new intelligent variable frequency traction winch[J]. Coal Science and Technology,2022,50(4):277-284. DOI: 10.13199/j.cnki.cst.2020-0605
[2] 罗文,杨俊彩. 神东矿区快速掘进装备与技术研究现状及展望[J]. 工矿自动化,2021,47(增刊2):32-38. LUO Wen,YANG Juncai. Research status and prospects on rapid tunneling equipment and technology in Shendong Mining Area[J]. Industry and Mine Automation,2021,47(S2):32-38.
[3] 韩国华. 网络计划技术在煤矿综采设备搬家倒面中的应用研究[J]. 煤炭工程,2010(6):49-51. DOI: 10.3969/j.issn.1671-0959.2010.06.021 HAN Guohua. Research on the application of network planning technology in moving inverted surface of fully mechanized mining equipment in coal mine[J]. Coal Engineering,2010(6):49-51. DOI: 10.3969/j.issn.1671-0959.2010.06.021
[4] 徐明,张剑铭,陈松航,等. 柔性作业车间调度问题的多目标优化算法[J]. 计算机与现代化,2021(12):1-6. DOI: 10.3969/j.issn.1006-2475.2021.12.001 XU Ming,ZHANG Jianming,CHEN Songhang,et al. Multi-objective optimization algorithm for flexible job shop scheduling problem[J]. Computer and Modernization,2021(12):1-6. DOI: 10.3969/j.issn.1006-2475.2021.12.001
[5] 蔡敏,王艳,纪志成. 混合粒子群优化算法求解模糊柔性作业车间调度问题[J]. 南京理工大学学报,2021,45(3):352-360. DOI: 10.14177/j.cnki.32-1397n.2021.45.03.014 CAI Min,WANG Yan,JI Zhicheng. Hybrid particle swarm optimization for solving fuzzy flexible job-shop scheduling problem[J]. Journal of Nanjing University of Science and Technology,2021,45(3):352-360. DOI: 10.14177/j.cnki.32-1397n.2021.45.03.014
[6] 田云娜,田园,刘雪,等. 一种改进的求解柔性作业车间调度问题的灰狼算法[J]. 计算机与现代化,2022(8):78-85. DOI: 10.3969/j.issn.1006-2475.2022.08.013 TIAN Yunna,TIAN Yuan,LIU Xue,et al. An improved grey wolf algorithm for flexible job shop scheduling problem[J]. Computer and Modernization,2022(8):78-85. DOI: 10.3969/j.issn.1006-2475.2022.08.013
[7] 马铭阳. 改进人工蜂群算法及其在柔性作业车间调度的应用研究[D]. 南京: 南京信息工程大学, 2021. MA Mingyang. Research on improved artificial bee colony algorithm and the application in flexible job-shop scheduling[D]. Nanjing: Nanjing University of Information Science and Technology, 2021.
[8] 杨帆,方成刚,洪荣晶,等. 改进遗传算法在车间调度问题中的应用[J]. 南京工业大学学报(自然科学版),2021,43(4):480-485. DOI: 10.3969/j.issn.1671-7627.2021.04.011 YANG Fan,FANG Chenggang,HONG Rongjing,et al. Application of improved genetic algorithm in job-shop scheduling problem[J]. Journal of Nanjing University of Technology(Natural Science Edition),2021,43(4):480-485. DOI: 10.3969/j.issn.1671-7627.2021.04.011
[9] 阳光灿,熊禾根. 改进遗传算法求解柔性作业车间调度问题[J]. 计算机仿真,2022,39(2):221-225,292. DOI: 10.3969/j.issn.1006-9348.2022.02.042 YANG Guangcan,XIONG Hegen. Improved genetic algorithm for flexible job shop scheduling problem[J]. Computer Simulation,2022,39(2):221-225,292. DOI: 10.3969/j.issn.1006-9348.2022.02.042
[10] 张立果. 基于改进遗传算法的柔性作业车间调度优化研究[D]. 南京: 南京航空航天大学, 2020. ZHANG Liguo. Research on flexible job-shop scheduling optimization based on improved genetic algorithm[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020.
[11] 陈宇鸣. 基于SINS/UWB的刮板输送机高可靠性直线度检测技术研究[D]. 徐州: 中国矿业大学, 2021. CHEN Yuming. Research on high reliability straightness measurement technology of scraper conveyor based on SINS/UWB[D]. Xuzhou: China University of Mining and Technology, 2021.
[12] 孙峰,陈璐,王朝阳,等. 综采面安装与回撤通道围岩控制技术研究[J]. 煤炭技术,2020,39(3):60-64. DOI: 10.13301/j.cnki.ct.2020.03.018 SUN Feng,CHEN Lu,WANG Chaoyang,et al. Study on surrounding rock control technology of installation and withdrawal channel in fully mechanized coal face[J]. Coal Technology,2020,39(3):60-64. DOI: 10.13301/j.cnki.ct.2020.03.018
[13] 石梦寒. 亿吨级矿区矿井群综采设备搬家倒面计划优化研究[D]. 徐州: 中国矿业大学, 2022. SHI Menghan. Research on the optimization of moving inverted plan of fully mechanized mining equipment in 100 million ton mining area[D]. Xuzhou: China University of Mining and Technology, 2022.
-
期刊类型引用(20)
1. 毛清华,胡鑫,王孟寒,张旭辉,薛旭升. 改进YOLOv5s的采煤机滚筒与支架护帮板干涉状态智能识别. 煤炭科学技术. 2024(02): 253-263 . 百度学术
2. 乔福龙. 液压支架护帮板收放监测系统应用分析. 机械管理开发. 2024(09): 202-204 . 百度学术
3. 左权. 工作面液压支架自适应对齐控制系统设计及应用. 矿业装备. 2024(08): 106-108 . 百度学术
4. 罗开成,韦金阳,王科平,常亚军,杨艺,袁瑞甫. 尘雾环境下工作面护帮板视频目标定位. 煤矿机械. 2023(01): 183-186 . 百度学术
5. 杜明,赵国瑞. 基于深度神经网络的护帮板运动状态监测. 煤炭工程. 2023(01): 106-111 . 百度学术
6. 巩师鑫,赵国瑞,王飞. 机器视觉感知理论与技术在煤炭工业领域应用进展综述. 工矿自动化. 2023(05): 7-21 . 本站查看
7. 刘华成. 综采面液压支架护帮板收放监测技术的研究与应用. 自动化应用. 2023(13): 160-162 . 百度学术
8. 李建,任怀伟,巩师鑫. 综采工作面液压支架状态感知与分析技术研究. 工矿自动化. 2023(10): 1-7+103 . 本站查看
9. 任怀伟,李帅帅,赵国瑞,张科学,杜明,周杰. 基于深度视觉原理的工作面液压支架支撑高度与顶梁姿态角测量方法研究. 采矿与安全工程学报. 2022(01): 72-81+93 . 百度学术
10. 魏强,白尚旺,龚大立,党伟超,潘理虎. 融合图像去雾与Tiny-YOLOv3的护帮板状态检测研究. 太原科技大学学报. 2022(01): 15-22+28 . 百度学术
11. 张帅,任怀伟,韩安,巩师鑫. 复杂条件工作面智能化开采关键技术及发展趋势. 工矿自动化. 2022(03): 16-25 . 本站查看
12. 鲍江峰. 液压支架协同方案设计. 机械管理开发. 2022(02): 9-11 . 百度学术
13. 张键,丰继林,袁静,周涵,刘祖阳. 液压支架护帮板工作状态智能识别. 计算机时代. 2022(06): 23-26 . 百度学术
14. 张旭辉,闫建星,麻兵,鞠佳杉,沈奇峰,吴雨佳. 基于改进YOLOv5s的护帮板异常检测方法研究. 工程设计学报. 2022(06): 665-675 . 百度学术
15. 李浩浩. 综采工作面智能化控制系统方案设计. 自动化应用. 2021(01): 147-148+151 . 百度学术
16. 程晋凯. 液压支架自适应对齐方案研究. 机械管理开发. 2021(07): 288-290 . 百度学术
17. 谢东明,黄勇钊. 基于小波分析的造纸机械状态监测方法研究. 造纸科学与技术. 2021(06): 29-33 . 百度学术
18. 任怀伟,赵国瑞,周杰,文治国,丁艳,李帅帅. 智能开采装备全位姿测量及虚拟仿真控制技术. 煤炭学报. 2020(03): 956-971 . 百度学术
19. 李帅帅,任怀伟. 综采工作面“三机”设备位姿测量技术研究现状与展望. 煤炭科学技术. 2020(09): 218-226 . 百度学术
20. 张凯,田原,贾曲. 机器视觉在煤机装备中的应用现状与趋势. 煤矿机械. 2020(12): 123-125 . 百度学术
其他类型引用(13)