Current status and development trend of intelligent transportation technology in China's open-pit mines
-
摘要: 运输环节作为露天矿生产工艺的最重要因素之一,其智能化是矿山整体智能化技术的重要研究内容。介绍了露天矿运输系统的构成及分类;明确了露天矿智能运输系统是以露天矿煤岩高效运输为应用场景,以智能化运输装备为核心载体,将物联网、云计算、大数据、人工智能、移动互联等数字技术与露天矿运输系统运行原理和工艺要求深度融合,建立运输系统内设备、环境、物料的自主协同高效运行体系,进而建立起大范围内发挥作用的实时、准确、高效的运输综合管理系统,其构成要素主要包括基础设施、运输工具和运算技术。指出露天矿传统运输系统与智能运输系统的区别在于智能运输系统以提高现场生产作业安全和效率为目标,服务对象由原来的生产管理人员转变为生产作业人员。从基础设施智能化、装备智能化、管控智能化、维保智能化和设计智能化5个方面,综述了我国露天矿智能运输系统的研究和产品应用现状。分析了露天矿卡车运输系统和带式输送机运输系统实现智能化亟待突破的关键技术:卡车智能运输关键技术包括矿山复杂路况的环境感知技术、无人驾驶卡车线控改造技术、多目标智能调度技术、有人−无人混编设备群智能协同技术;带式输送机智能运输关键技术包括工作面带式输送机自主横移技术、自移式大倾角带式输送机运输技术、带式输送机运行控制技术、带式输送机状态在线检测技术、带式输送机智能巡检技术、带式输送机无人化维护技术、带式输送机运输系统智能管控平台。指出露天矿智能运输发展的趋势为连续化、无人化、低碳化、高效协同和本质安全。Abstract: As one of the most important factors in the production process of open-pit mine, the intelligence of transportation is an important research content of the whole intelligence technology of mine. This paper introduces the composition and classification of the transportation system in open-pit mine. It is clarified that the intelligent transportation system in open-pit mine takes the efficient transportation of coal and rock in open-pit mine as the application scenario and the intelligent transportation equipment as the core carrier. The digital technologies such as the Internet of things, cloud computing, big data, artificial intelligence, and mobile Internet are integrated with the operating principles and technological requirements of the open-pit mine transportation system. The autonomous collaborative and efficient operation system of equipment, environment and materials in the transportation system is established. And the real-time, accurate and efficient transportation integrated management system that plays a role in a wide range is further established. The components of the intelligent transportation system in open-pit mine mainly include infrastructure, transportation tools and computing technology. It is pointed out that the difference between the traditional transportation system and the intelligent transportation system in open-pit mine lies in that the intelligent transportation system takes improving the safety and efficiency of field production operation as the goal. The service object is changed from the original production management personnel to the production operating personnel. The research and application status of intelligent transportation system in open-pit mine in China are summarized from five aspects, including intelligent infrastructure, intelligent equipment, intelligent management and control, intelligent maintenance and intelligent design. The key technologies of the truck transportation system and the belt conveyor transportation system in the open-pit mine to realize the intelligence are analyzed in this paper. The key technologies of intelligent truck transportation include environment perception technology for complex road conditions in mines, line control transformation technology for unmanned driving truck, multi-objective intelligent scheduling technology, and intelligent collaboration technology for manned-unmanned mixed equipment group. The key technologies of intelligent belt conveyor transportation include autonomous traverse technology of belt conveyor in working face, transportation technology of self-moving large-angle belt conveyor, operation control technology of belt conveyor, on-line status detection technology of belt conveyor, intelligent inspection technology of belt conveyor, unmanned maintenance technology of belt conveyor, intelligent management and control platform of belt conveyor transportation system. It is pointed out that the development trend of intelligent transportation in open-pit mine is continuous, unmanned, low-carbon, efficient coordination and intrinsic safety.
-
0. 引言
煤炭是我国主要能源,在一次能源中,生产量约占70%,消费量约占60%[1-3]。2021年我国原煤产量41.3亿t,同比增长5.7%[4]。煤炭行业是高危行业,煤矿事故主要包括瓦斯爆炸、煤与瓦斯突出、水灾、火灾、冲击地压、顶板冒落、爆破事故、机电事故、运输事故等。近年来,通过煤矿智能化、信息化和自动化建设,煤矿安全形势逐年好转,事故起数、死亡人数、百万吨死亡率大幅下降[1-3]。2021年全国煤矿共发生死亡事故91起、死亡178人,同比减少事故32起、减少死亡50人,分别下降26%和21.9%[5]。
减少煤矿井下作业人员,是煤矿安全生产和煤矿智能化的必然选择[6-8]。目前,煤矿井下水泵房、机电硐室、带式输送机等固定岗位已实现无人值守、地面远程控制。为进一步减少煤矿井下作业人员,人们正在积极探索采煤工作面和掘进工作面地面远程控制及矿井车辆无人驾驶。煤矿井下设备无人操作、地面远程控制,需要将煤矿井下视频、音频、传感器和执行器等数据实时、准确地传输至地面调度控制中心,并将控制命令实时、准确地传输至被控设备。因此,承载视频、音频、传感器和执行器等数据上传和下达的信息综合承载网,必须满足大带宽、低时延、高可靠等要求。
目前用于煤矿井下的信息承载网主要是百兆、千兆和万兆矿用以太环网,其时延和可靠性不可控,难以满足煤矿井下少人或无人作业、地面远程控制等需求。因此,研究大带宽、短时延、高可靠的煤矿智能化信息综合承载网,既是减少煤矿井下作业人员、实现地面远程控制的需要,也是煤矿监控、定位、音频、视频等多网合一的需要。
1. 煤矿智能化信息综合承载网技术要求
为满足煤矿井下少人或无人作业和地面远程控制等需求,煤矿智能化信息综合承载网应满足下列要求:
(1) 传输带宽宽。综合承载网的传输带宽应满足视频、音频和监控数据等实时传输的需求,并具有上行带宽大于下行带宽的特点。无人或少人作业的300 m综采工作面约需防爆摄像机60台,每台4K高清矿用防爆摄像机数据压缩后传输带宽按20 Mbit/s计算,1个综采工作面需要传输带宽约1 200 Mbit/s[9];每台1 080P高清矿用防爆摄像机数据压缩后传输带宽按5 Mbit/s计算,1个综采工作面需要传输带宽约300 Mbit/s。煤矿井下采掘工作面多,巷道长度长(单一巷道长度达10 km、巷道累计长度达几十千米),机电硐室多,机电设备和矿用车辆多。要实现“采、掘、机、运(提)、通、压、排”等生产环节无人或少人作业和地面远程控制,需要大量的矿用摄像机、传感器和执行器。视频传输所需带宽远大于音频和监控数据,因此,综合承载网所需传输带宽可以按视频传输带宽估算。
(2) 传输时延短。时延是地面远程实时控制的关键,综合承载网传输时延越短越好。为满足地面远程实时控制的需要,综合承载网传输时延应不大于人的反应时间的1/10。人的反应时间因人而异,若按200 ms计算,则综合承载网传输时延应不大于20 ms。
(3) 可靠性高。可靠性是地面远程可靠控制的关键,综合承载网可靠性越高越好。按允许万分之一错误计算,综合承载网的可靠性应大于99.99%。
(4) 传输距离远。采煤工作面和掘进工作面等距地面调度控制中心的距离可达10 km[10]。因此,综合承载网传输距离应不小于10 km,以满足采煤工作面和掘进工作面视频、音频和监控数据等传输至地面调度控制中心,地面调度控制中心控制命令传输至现场设备等需求。
(5) 抗干扰能力强。煤矿井下空间狭小,设备集中,单台设备功率大(达数兆瓦),大功率变频设备多,无线通信、定位、视频和监控设备多。大功率设备启停,大功率变频设备工作,无线通信、定位、视频和监控设备工作,影响着煤矿井下电磁环境。因此,综合承载网应抗干扰能力强。综合承载网应能通过GB/T 17626.3—2016《电磁兼容 试验和测量技术 射频电磁场辐射抗扰度试验》规定的严酷等级2级的射频电磁场辐射抗扰度试验,试验中和试验后,受试设备均能正常工作。综合承载网应能通过GB/T 17626.4—2018《电磁兼容 试验和测量技术 电快速瞬变脉冲群抗扰度试验》规定的严酷等级2级的电快速瞬变脉冲群抗扰度试验,试验中和试验后,受试设备均能正常工作。综合承载网设备的交流电源端口应能通过GB/T 17626.5—2008《电磁兼容 试验和测量技术 浪涌(冲击)抗扰度试验》规定的严酷等级3级的浪涌(冲击)抗扰度试验,试验中受试设备功能或性能暂时降低或丧失,试验后受试设备能自行恢复并正常工作。综合承载网设备的直流电源端口和信号端口应能通过GB/T 17626.5—2008《电磁兼容 试验和测量技术 浪涌(冲击)抗扰度试验》规定的严酷等级2级的浪涌(冲击)抗扰度试验,试验中受试设备功能或性能暂时降低或丧失,试验后受试设备能自行恢复并正常工作。综合承载网地面设备应能通过GB/T 17626.2—2006《电磁兼容 试验和测量技术 静电放电抗扰度试验》规定的严酷等级3级的静电放电抗扰度试验,试验中和试验后,受试设备均能正常工作。
(6) 本质安全防爆。煤矿井下有瓦斯、煤尘等爆炸性物质,用于煤矿井下的电气设备必须防爆。在所有防爆类型中,本质安全防爆安全性最好,可在煤矿井下任何地点和任何时间使用。因此,为保证瓦斯超限后综合承载网仍能正常工作,综合承载网防爆类型应优选本质安全型,在光缆和电缆上传输的信号必须是本质安全型信号。综合承载网电源应为隔爆兼本质安全型、浇封兼本质安全型等本质安全与其他防爆型式的复合型式防爆电气设备。
(7) 电网电压波动适应能力强。地面电网电压波动范围较小,一般为−10%~+10%。煤矿井下电网电压波动范围大,可达−25%~+10%。为保证设备在煤矿井下电网电压波动范围内正常工作,综合承载网应具有较强的电网电压波动适应能力。
(8) 抗故障能力强。煤矿井下事故会造成设备损毁和位移、光缆和电缆断缆、电网停电等。综合承载网应具有较强的抗故障能力:当顶板冒落等造成断缆时,不会造成整个综合承载网瘫痪;当井下部分设备停电或出现故障时,不影响其他设备和综合承载网正常工作。综合承载网路由器/交换机尽量设置在机电硐室,线缆应采用铠装光缆和电缆。底鼓不严重的矿井,铠装线缆宜设置在巷帮与底板夹角处。
(9) 防护性能好。煤矿井下环境严酷,潮湿、粉尘大、有淋水,有硫化氢等腐蚀性气体。因此,综合承载网设备应具有较好的防护性能,防护性能应不低于IP54,采煤工作面和掘进工作面设备的防护性能应不低于IP65。
(10) 多业务综合承载。煤矿井下空间狭小、照度低,线缆维护困难。因此,应减少煤矿井下光缆用量,一网承载多种业务。煤矿井下有监控、定位、音频、视频等4大业务。这些业务对传输带宽、实时性、可靠性有不同的要求。用于地面远程控制的视频要求传输带宽宽、时延短、可靠性高。不用于地面远程控制的视频要求传输带宽宽,但对时延和可靠性要求不高。矿井安全、供电、运输、排水、采煤工作面、掘进工作面等监控数据占用传输带宽窄,但要求传输时延短、可靠性高。因此,一张网综合承载矿井监控、定位、音频和视频等业务,需解决信道按需分配等关键技术问题。
2. 基于FlexE的煤矿智能化信息综合承载网
目前煤矿井下信息传输骨干网主要采用百兆、千兆或万兆矿用以太网。以太网采用载波多重访问/碰撞侦测(Carrier Sense Multiple Access/Collision Detection,CSMA/CD)技术共享介质,具有应用范围广、性价比高、使用维护方便等优点,但传输时延和可靠性不可控,特别当传输数据量相对网络带宽较大时,会发生拥塞和丢包。为满足不同应用对服务的需求,人们提出了服务质量(Quality of Service,QoS)方法:给实时性要求高或重要的数据报文提供较高的优先级,优先处理;给实时性要求不高或普通的数据报文提供较低的优先级,当网络拥塞时丢弃。通常,QoS可保证最高优先级应用的实时性和可靠性,但当多路接口信号同时汇入且数据量较大时,或前1个数据包正在发送时,最高优先级应用的实时性和可靠性也无法保证。
灵活以太网(Flexible Ethernet,FlexE)是承载网实现不同业务隔离承载和网络切片的一种接口技术。FlexE在标准以太网基础上,通过在媒体接入控制层(MAC)与物理层(PHY)之间增加1个FlexE Shim层(图1)[11],将MAC与PHY解耦,打破MAC与PHY一一映射的强绑定关系,可以将多个MAC映射到多个PHY,实现不同业务隔离承载、带宽灵活配置。
FlexE通用架构如图2所示[11]。FlexE Client对应网络各种用户接口,可根据带宽需求灵活配置为10,25,40,50,100,200,400 Gbit/s等。FlexE Group是以太网PHY资源池。FlexE Shim将FlexE Group中的每个100GE PHY划分为20个时隙(Slot)的数据承载通道,每个时隙的带宽为5 Gbit/s(可以更小),用户接口可从资源池中申请独立的带宽资源,供自己独有。
FlexE解决了标准以太网时延和可靠性不可控的缺点,同时保留了以太网应用范围广、性价比高、使用维护方便等优点,具有带宽配置灵活、不同业务互不干扰、传输时延和可靠性可控等优点,即使某业务信道发生拥塞和丢包,也不会影响其他业务信道。因此,笔者提出了基于FlexE的煤矿智能化信息综合承载网,可根据时间敏感和时间不敏感视频、时间敏感和时间不敏感音频、人员定位、车辆定位、设备定位、安全监控、供电监控、运输监控、排水监控、采煤工作面监控、掘进工作面监控等不同业务对带宽、时延和可靠性的需求,分配不同的信道,将煤矿监控、定位、视频、音频等多网合一。基于FlexE的煤矿智能化信息综合承载网既满足了地面远程控制、人员定位、安全监控等不同业务对带宽、时延和可靠性的需求,又实现了煤矿智能化信息一网综合承载,减小了维护难度和工作量。
3. 结论
(1) 为满足煤矿井下少人或无人作业、地面远程控制等需求,提出了煤矿智能化信息综合承载网技术要求:传输带宽宽、传输时延短、可靠性高、传输距离远、抗干扰能力强、本质安全防爆、电网电压波动适应能力强、抗故障能力强、防护性能好、多业务综合承载等。
(2) FlexE是在标准以太网的MAC与PHY之间增加了1个FlexE Shim层,将MAC与PHY解耦,打破了MAC与PHY一一映射的强绑定关系,可以将多个MAC映射到多个PHY,实现了不同业务隔离承载、带宽灵活配置,具有带宽配置灵活、不同业务互不干扰、传输时延和可靠性可控等优点。
(3) 提出了基于FlexE的煤矿智能化信息综合承载网,根据时间敏感和时间不敏感视频、时间敏感和时间不敏感音频、人员定位、车辆定位、设备定位、安全监控、供电监控、运输监控、排水监控、采煤工作面监控、掘进工作面监控等不同业务对带宽、时延和可靠性的需求,分配不同的信道,将煤矿监控、定位、视频、音频等多网合一。基于FlexE的煤矿智能化信息综合承载网既满足了地面远程控制、人员定位、安全监控等不同业务对带宽、时延和可靠性的需求,又实现了煤矿智能化信息一网综合承载,减小了维护难度和工作量。
-
-
[1] 李杰, 王富, 何雅琴. 交通工程学[M]. 北京: 北京大学出版社, 2010. LI Jie, WANG Fu, HE Yaqin. Traffic engineering[M]. Beijing: Peking University Press, 2010.
[2] 张瑞新,赵红泽. 中国露天矿山信息化现状及发展趋势[J]. 露天采矿技术,2014(9):1-4. ZHANG Ruixin,ZHAO Hongze. Current situation and development trend of open-pit mines informatization in China[J]. Opencast Mining Technology,2014(9):1-4.
[3] 王国法. “双碳”目标下, 煤炭工业如何应对新挑战[N]. 中国煤炭报, 2021-09-23(3). WANG Guofa. How can the coal industry cope with new challenges under the goal of 'double carbon'[N]. China Coal News, 2021-09-23(3).
[4] 杨兆升, 于德新. 智能运输系统概论[M]. 3版. 北京: 人民交通出版社, 2015. YANG Zhaosheng, YU Dexin. Introduction to intelligent transportation system[M]. 3rd ed. Beijing: China Communication Press, 2015.
[5] 王青, 任凤玉, 顾晓薇, 等. 采矿学[M]. 北京: 冶金工业出版社, 2011. WANG Qing, REN Fengyu, GU Xiaowei, et al. Coal mining science[M]. Beijing: Metallurgical Industry Press, 2011.
[6] 王国法,庞义辉,任怀伟. 智慧矿山技术体系研究与发展路径[J]. 金属矿山,2022,51(5):1-9. DOI: 10.19614/j.cnki.jsks.202205001 WANG Guofa,PANG Yihui,REN Huaiwei. Research and development path of smart mine technology system[J]. Metal Mine,2022,51(5):1-9. DOI: 10.19614/j.cnki.jsks.202205001
[7] 王忠鑫,辛凤阳,宋波,等. 论露天煤矿智能化建设总体设计[J]. 煤炭科学技术,2022,50(2):37-46. DOI: 10.13199/j.cnki.cst.2021-1053 WANG Zhongxin,XIN Fengyang,SONG Bo,et al. Overall design of intelligent construction in open pit coal mines[J]. Coal Science and Technology,2022,50(2):37-46. DOI: 10.13199/j.cnki.cst.2021-1053
[8] 邓红星,巴兴强. 浅谈智能运输系统的发展[J]. 黑龙江交通科技,2008(1):117. DOI: 10.3969/j.issn.1008-3383.2008.01.060 DENG Hongxing,BA Xingqiang. On the development of intelligent transportation system[J]. Communications Science and Technology Heilongjiang,2008(1):117. DOI: 10.3969/j.issn.1008-3383.2008.01.060
[9] 王爽,余涵. 智能运输系统的发展与应用[J]. 交通世界,2019(7):8-9. WANG Shuang,YU Han. Development and application of intelligent transportation system[J]. Transpo World,2019(7):8-9.
[10] 何林,李克民. 无线Mesh网络技术在露天矿通信系统中的应用前景[J]. 金属矿山,2012,41(4):118-120,167. DOI: 10.3969/j.issn.1001-1250.2012.04.030 HE Lin,LI Kemin. Application outlook of wireless mesh networks in open-pit communication system[J]. Metal Mine,2012,41(4):118-120,167. DOI: 10.3969/j.issn.1001-1250.2012.04.030
[11] 郭文馨. 4G无线通信系统在露天矿山中的应用[J]. 电脑编程技巧与维护,2017(8):76-79. DOI: 10.3969/j.issn.1006-4052.2017.08.031 GUO Wenxin. Application of 4G wireless communication system in open pit mine[J]. Computer Programming Skills & Maintenance,2017(8):76-79. DOI: 10.3969/j.issn.1006-4052.2017.08.031
[12] 孙继平,陈晖升. 智慧矿山与5G和WiFi6[J]. 工矿自动化,2019,45(10):1-4. SUN Jiping,CHEN Huisheng. Smart mine with 5G and WiFi6[J]. Industry and Mine Automation,2019,45(10):1-4.
[13] 王国法,赵国瑞,胡亚辉. 5G技术在煤矿智能化中的应用展望[J]. 煤炭学报,2020,45(1):16-23. WANG Guofa,ZHAO Guorui,HU Yahui. Application prospect of 5G technology in coal mine intelligence[J]. Journal of China Coal Society,2020,45(1):16-23.
[14] 孙效玉,田凤亮,张航,等. 基于GPS数据的露天矿道路网自动提取[J]. 煤炭学报,2017,42(11):3059-3064. DOI: 10.13225/j.cnki.jccs.2017.0308 SUN Xiaoyu,TIAN Fengliang,ZHANG Hang,et al. Automatic extraction of road network in open-pit mine based on GPS data[J]. Journal of China Coal Society,2017,42(11):3059-3064. DOI: 10.13225/j.cnki.jccs.2017.0308
[15] TIAN Fengliang,SUN Xiaoyu,GU Xiaowei,et al. Updating road information in open-pit mines using truck trajectories[J]. Mathematical Problems in Engineering,2019,2019:1-8.
[16] SUN Xiaoyu,ZHANG Hang,TIAN Fengliang,et al. The use of a machine learning method to predict the real-time link travel time of open-pit trucks[J]. Mathematical Problems in Engineering,2018(7):1-14.
[17] 顾清华,薛步青,卢才武,等. 基于D−LinkNet网络的露天矿道路智能识别与路网建模[J]. 煤炭学报,2020,45(增刊2):1100-1108. GU Qinghua,XUE Buqing,LU Caiwu,et al. Road intelligent recognition and road network modeling of open pit based on D-LinkNet network[J]. Journal of China Coal Society,2020,45(S2):1100-1108.
[18] 李庆玲,张慧祥,赵旭阳,等. 露天矿无人驾驶自卸卡车发展综述[J]. 煤炭工程,2021,53(2):29-34. LI Qingling,ZHANG Huixiang,ZHAO Xuyang,et al. Overview of unmanned mining trucks in open-pit mine[J]. Coal Engineering,2021,53(2):29-34.
[19] 赵浩,毛开江,曲业明,等. 我国露天煤矿无人驾驶及新能源卡车发展现状与关键技术[J]. 中国煤炭,2021,47(4):45-50. DOI: 10.3969/j.issn.1006-530X.2021.04.007 ZHAO Hao,MAO Kaijiang,QU Yeming,et al. Development status and key technology of driverless and new energy trucks in open-pit coal mine in China[J]. China Coal,2021,47(4):45-50. DOI: 10.3969/j.issn.1006-530X.2021.04.007
[20] 程平, 李晓光, 顾清华, 等. 露天矿新能源纯电动卡车的智能调度优化及应用[J/OL]. 金属矿山: 1-11[2022-04-15]. http://kns.cnki.net/kcms/detail/34.1055.TD.20211223.1738.002.html. CHENG Ping, LI Xiaoguang, GU Qinghua, et al. Intelligent scheduling optimization and application of new energy electric truck in open-pit mine[J/OL]. Metal Mine: 1-11[2022-04-15]. http://kns.cnki.net/kcms/detail/34.1055.TD.20211223.1738.002.html.
[21] 葛世荣,郝尚清,张世洪,等. 我国智能化采煤技术现状及待突破关键技术[J]. 煤炭科学技术,2020,48(7):28-46. GE Shirong,HAO Shangqing,ZHANG Shihong,et al. Status of intelligent coal mining technology and potential key technologies in China[J]. Coal Science and Technology,2020,48(7):28-46.
[22] 蒋卫良,郗存根,宋兴元,等. 煤矿带式输送机关键技术发展现状与展望[J]. 智能矿山,2020,1(1):98-104. JIANG Weiliang,XI Cungen,SONG Xingyuan,et al. Development status and prospect of key technology of coal mine belt conveyor[J]. Journal of Intelligent Mine,2020,1(1):98-104.
[23] 李臻,操虹,贾洪钢,等. 煤矿带式输送机轴承监测诊断系统及其应用[J]. 工矿自动化,2011,37(12):15-18. LI Zhen,CAO Hong,JIA Honggang,et al. Bearing monitoring and diagnosis system of belt conveyor of coal mine and its application[J]. Industry and Mine Automation,2011,37(12):15-18.
[24] 曹艳军,柳骁. 原煤运输系统智能化关键技术研究[J]. 工矿自动化,2021,47(增刊2):56-59. CAO Yanjun,LIU Xiao. Research on the key technologies of intelligent coal transport system[J]. Industry and Mine Automation,2021,47(S2):56-59.
[25] 毛君, 陈迪, 白杨溪, 等. 一种带式输送机工作状态下的托辊更换车: CN112975830A[P]. 2021-06-18. MAO Jun, CHEN Di, BAI Yangxi, et al. An idler replacement vehicle under the working state of belt conveyor: CN112975830A[P]. 2021-06-18.
[26] 陈洪月, 毕文钦, 王鑫, 等. 一种运行中带式输送机托辊更换车: CN112975831A[P]. 2021-06-18. CHEN Hongyue, BI Wenqin, WANG Xin, et al. A roller replacement vehicle for belt conveyor in operation: CN112975831A[P]. 2021-06-18.
[27] 聂永朝,冯宝忠,杨洋. 带式输送机智能运维管理平台研究与设计[J]. 中国煤炭,2021,47(4):37-44. DOI: 10.3969/j.issn.1006-530X.2021.04.006 NIE Yongchao,FENG Baozhong,YANG Yang. Research and design of intelligent operation and maintenance management platform for belt conveyor[J]. China Coal,2021,47(4):37-44. DOI: 10.3969/j.issn.1006-530X.2021.04.006
[28] 付恩三,刘光伟,邸帅,等. 露天矿山无人驾驶技术及系统架构研究[J]. 煤炭工程,2022,54(1):34-39. FU Ensan,LIU Guangwei,DI Shuai,et al. Unmanned driving technology and system architecture in open-pit mines[J]. Coal Engineering,2022,54(1):34-39.
[29] 辛凤阳,王忠鑫,田凤亮,等. 基于BS架构的露天矿连续工艺一体化管控平台设计与实现[J]. 金属矿山,2021,50(12):177-182. XIN Fengyang,WANG Zhongxin,TIAN Fengliang,et al. Design and implementation of integrated management and control platform for open pit continuous process based on BS architecture[J]. Metal Mine,2021,50(12):177-182.
[30] 田凤亮,孙效玉,张航. 一种露天矿卡车故障的NLP技术挖掘与分析方法[J]. 金属矿山,2017,46(7):138-142. DOI: 10.3969/j.issn.1001-1250.2017.07.028 TIAN Fengliang,SUN Xiaoyu,ZHANG Hang. A mining and analyzing method of truck fault in open-pit mine based on NLP technology[J]. Metal Mine,2017,46(7):138-142. DOI: 10.3969/j.issn.1001-1250.2017.07.028
[31] 白润才,柴森霖,刘光伟,等. 基于Mallat算法与ARMA模型的露天矿卡车故障率预测[J]. 中国安全科学学报,2018,28(10):31-37. DOI: 10.16265/j.cnki.issn1003-3033.2018.10.006 BAI Runcai,CHAI Senlin,LIU Guangwei,et al. Method for predicting truck's failure rate in open-pit mine based on Mallat algorithm and ARMA model[J]. China Safety Science Journal,2018,28(10):31-37. DOI: 10.16265/j.cnki.issn1003-3033.2018.10.006
[32] 刘威,郭直清,黄敏,等. 基于MCMC算法的露天矿典型设备故障预测方法研究[J]. 煤炭科学技术,2019,47(10):51-57. LIU Wei,GUO Zhiqing,HUANG Min,et al. Research on fault prediction method of typical equipment in open-pit mine based on MCMC algorithm[J]. Coal Science and Technology,2019,47(10):51-57.
[33] 毛清华,毛金根,马宏伟,等. 矿用带式输送机智能监测系统研究[J]. 工矿自动化,2020,46(6):48-52,58. MAO Qinghua,MAO Jingen,MA Hongwei,et al. Research on intelligent monitoring system of mine-used belt conveyor[J]. Industry and Mine Automation,2020,46(6):48-52,58.
[34] 刘光伟,柴森霖,白润才,等. 露天矿山开拓运输系统道路选线算法[J]. 煤炭学报,2019,44(12):3931-3940. LIU Guangwei,CHAI Senlin,BAI Runcai,et al. Route selection algorithm of open-pit mine transportation system[J]. Journal of China Coal Society,2019,44(12):3931-3940.
[35] 刘光伟,李晋,柴森霖,等. 基于时空演化的露天矿运输线路存留状态判别算法[J]. 煤炭学报,2020,45(6):2147-2154. DOI: 10.13225/j.cnki.jccs.zn20.0236 LIU Guangwei,LI Jin,CHAI Senlin,et al. Spatio-temporal state discrimination and prediction of road transportation system in open-pit mine[J]. Journal of China Coal Society,2020,45(6):2147-2154. DOI: 10.13225/j.cnki.jccs.zn20.0236
[36] 赵明,王忠鑫,曾祥玉,等. 基于3DMine软件的露天矿境界优化研究[J]. 露天采矿技术,2021,36(3):30-33. DOI: 10.13235/j.cnki.ltcm.2021.03.008 ZHAO Ming,WANG Zhongxin,ZENG Xiangyu,et al. Study on boundary optimization of open-pit mine based on 3DMine software[J]. Opencast Mining Technology,2021,36(3):30-33. DOI: 10.13235/j.cnki.ltcm.2021.03.008
[37] 徐文轩,李伟. 无人驾驶汽车环境感知与定位技术[J]. 汽车科技,2021(6):53-60. XU Wenxuan,LI Wei. Environment perception and location technology of driverless vehicles[J]. Auto Sci-Tech,2021(6):53-60.
[38] 张伦. 矿用自卸卡车无人驾驶线控改装[J]. 工矿自动化,2021,47(增刊1):88-90. ZHANG Lun. Linear control refit of mine-used self-unloading truck for driverless[J]. Industry and Mine Automation,2021,47(S1):88-90.
[39] 张明,顾清华,李发本,等. 基于多目标遗传算法的露天矿卡车调度优化研究[J]. 金属矿山,2019,48(6):157-162. ZHANG Ming,GU Qinghua,LI Faben,et al. Research of open-pit mine truck dispatching optimization based on multi-objective genetic algorithm[J]. Metal Mine,2019,48(6):157-162.
[40] 孙效玉,田凤亮,张航,等. 兼顾固定配车需要的露天矿车流规划模型[J]. 煤炭学报,2016,41(增刊2):583-588. SUN Xiaoyu,TIAN Fengliang,ZHANG Hang,et al. Traffic flow model in open pit mine for needs of fixed assignment of truck[J]. Journal of China Coal Society,2016,41(S2):583-588.
[41] 孙效玉,赵松松,刘恒,等. 露天矿车流路网均衡分配模型[J]. 煤炭学报,2017,42(6):1607-1613. SUN Xiaoyu,ZHAO Songsong,LIU Heng,et al. Equilibrium distribution model of traffic flow on road network for traffic flow of open pit[J]. Journal of China Coal Society,2017,42(6):1607-1613.
[42] 武讲,郑群飞. 哈尔乌素露天矿无人驾驶方案研究[J]. 金属矿山,2021,50(2):167-172. WU Jiang,ZHENG Qunfei. Feasibility study of driverless system in Harwusu Open-pit Coal Mine[J]. Metal Mine,2021,50(2):167-172.
[43] 陈洪亮,李申岩,刘玲,等. 露天矿端帮自移式大倾角输送设备结构形式的研究[J]. 煤矿机械,2019,40(6):149-151. DOI: 10.13436/j.mkjx.201906048 CHEN Hongliang,LI Shenyan,LIU Ling,et al. Research on structural forms of self-moving high angle conveying equipment for open pit mine slope[J]. Coal Mine Machinery,2019,40(6):149-151. DOI: 10.13436/j.mkjx.201906048
[44] 周保卫. 多级串联带式输送机智能协调控制系统[J]. 煤矿机械,2020,41(12):180-182. ZHOU Baowei. Intelligent coordinated control system of multi-stage series belt conveyor[J]. Coal Mine Machinery,2020,41(12):180-182.
[45] 谢进,任文清. 煤矿钢丝绳芯输送带检测系统[J]. 工矿自动化,2021,47(增刊1):69-71. XIE Jin,REN Wenqing. Coal mine steel cord conveyor belt detection system[J]. Industry and Mine Automation,2021,47(S1):69-71.
[46] 刘澎,任文清. 煤矿无人值守带式输送机智能化系统设计[J]. 工矿自动化,2021,47(增刊2):75-77,96. LIU Peng,REN Wenqing. Design of intelligent system of unattended belt conveyor in coal mine[J]. Industry and Mine Automation,2021,47(S2):75-77,96.
[47] 林东玲. 基于多信息融合技术的矿用带式输送机故障诊断系统研究[J]. 煤矿机械,2020,41(6):169-171. DOI: 10.13436/j.mkjx.202006056 LIN Dongling. Research on fault diagnosis system of mine belt conveyor based on multi information fusion technology[J]. Coal Mine Machinery,2020,41(6):169-171. DOI: 10.13436/j.mkjx.202006056
[48] 蒋卫良,王兴茹,刘冰,等. 煤矿智能化连续运输系统关键技术研究[J]. 煤炭科学技术,2020,48(7):134-142. DOI: 10.13199/j.cnki.cst.2020.07.013 JIANG Weiliang,WANG Xingru,LIU Bing,et al. Study on key technology of coal mine intelligent continuous transportation[J]. Coal Science and Technology,2020,48(7):134-142. DOI: 10.13199/j.cnki.cst.2020.07.013