矿井电火花及热动力灾害紫外图像感知方法研究

孙继平, 李小伟, 徐旭, 张森森

孙继平,李小伟,徐旭,等. 矿井电火花及热动力灾害紫外图像感知方法研究[J]. 工矿自动化,2022,48(4):1-4, 95. DOI: 10.13272/j.issn.1671-251x.17917
引用本文: 孙继平,李小伟,徐旭,等. 矿井电火花及热动力灾害紫外图像感知方法研究[J]. 工矿自动化,2022,48(4):1-4, 95. DOI: 10.13272/j.issn.1671-251x.17917
SUN Jiping, LI Xiaowei, XU Xu, et al. Research on ultraviolet image perception method of mine electric spark and thermal power disaster[J]. Journal of Mine Automation,2022,48(4):1-4, 95. DOI: 10.13272/j.issn.1671-251x.17917
Citation: SUN Jiping, LI Xiaowei, XU Xu, et al. Research on ultraviolet image perception method of mine electric spark and thermal power disaster[J]. Journal of Mine Automation,2022,48(4):1-4, 95. DOI: 10.13272/j.issn.1671-251x.17917

矿井电火花及热动力灾害紫外图像感知方法研究

基金项目: 国家重点研发计划资助项目(2016YFC0801800)。
详细信息
    作者简介:

    孙继平(1958—),男,山西翼城人,教授,博士,博士研究生导师,中国矿业大学(北京)信息工程研究所所长,原副校长;获国家科技进步奖和技术发明奖二等奖4项(第1完成人3项);作为第1完成人获省部级科技进步特等奖和一等奖8项;作为第1完成人主持制定中华人民共和国煤炭行业、安全生产行业和能源行业标准38项;作为第1发明人获国家授权发明专利100余件;主持制定《煤矿安全规程》第十一章“监控与通信”;作为第1作者或独立完成著作12部;被SCI和EI检索的第1作者或独立完成论文90余篇;作为国务院煤矿事故调查专家组组长参加了10起煤矿特别重大事故调查工作;E-mail:sjp@cumtb.edu.cn

  • 中图分类号: TD67

Research on ultraviolet image perception method of mine electric spark and thermal power disaster

  • 摘要: 煤矿井下电缆和电气设备漏电,大功率无线电发射在金属支护和机电设备金属上感生电动势放电,均会产生电火花,进而引起矿井火灾、瓦斯和煤尘爆炸。尽早感知矿井电火花,并采取电火花防治措施,可避免或减少矿井火灾、瓦斯和煤尘爆炸。尽早感知矿井火灾及瓦斯和煤尘爆炸,及时应急救援,可减少人员伤亡和财产损失。提出了矿井电火花及热动力灾害紫外图像感知方法:在采煤工作面、掘进工作面和巷道,设置紫外摄像机、拾音器和空气压力传感器,实时采集矿井紫外图像、声音和空气压力;对紫外图像预处理;排除日光灯、白炽灯和LED灯干扰;判别有电火花紫外图像,进行电火花报警;判别有火灾紫外图像,进行火灾报警;有紫外图像,但判别不是电火花和火灾紫外图像,同时拾音器监测到爆炸音或空气压力传感器监测到空气压力突然升高,则发出瓦斯和煤尘爆炸报警。紫外图像受白炽灯和日光灯干扰大,受LED灯干扰小。随着LED灯在煤矿井下全面替代白炽灯和日光灯,煤矿井下各种照明和信号设备对煤矿井下紫外图像干扰小。因此,矿井电火花及热动力灾害紫外图像感知方法具有外部干扰小,可靠性高,同时感知电火花、外因火灾、瓦斯和煤尘爆炸多种灾害等优点。
    Abstract: The electric leakage of underground cables and electrical equipment in coal mine, electromotive force discharge induced by high-power radio transmission on metal support and electromechanical equipment metal will generate electric spark, which will then lead to mine fire, gas and coal dust explosion. The early perception of mine electric spark and taking preventive measures can avoid or reduce mine fire, gas and coal dust explosion. The early perception of mine fire, gas and coal dust explosion and timely emergency rescue can reduce casualties and property losses. The ultraviolet image perception method of mine electric spark and thermal power disaster is proposed. The ultraviolet camera, pickup and air pressure sensor are set in coal working face, heading face and roadway to collect mine ultraviolet image, sound and air pressure in real time. The ultraviolet images are preprocessed. The interference of fluorescent lamps, incandescent lamps and LED lamps is eliminated. If there was an electric spark ultraviolet image, the electric spark alarm would be given. If there was a fire ultraviolet image, the fire alarm would be given. If the ultraviolet image was not an electric spark image nor a fire ultraviolet image, and if the pickup detected an explosion sound or the air pressure sensor detected a sudden increase in air pressure, the gas and coal dust explosion alarm would be given. The ultraviolet image is greatly interfered by incandescent lamps and fluorescent lamps, and is less interfered by LED lamps. With LED lamp replacing incandescent lamp and fluorescent lamp in coal mine, various lighting and signal equipment in coal mine have little interference to ultraviolet image in coal mine. Therefore, the ultraviolet image perception method of mine electric spark and thermal power disaster has the advantages of small external interference, high reliability and simultaneously perception of electric spark, external fire, gas and coal dust explosion disasters.
  • 图  1   矿井电火花及热动力灾害紫外图像感知方法

    Figure  1.   Ultraviolet image perception method of mine electric spark and thermal dynamic disaster

  • [1] 孙继平,钱晓红. 2004—2015年全国煤矿事故分析[J]. 工矿自动化,2016,42(11):1-5.

    SUN Jiping,QIAN Xiaohong. Analysis of coal mine accidents in China during 2004-2015[J]. Industry and Mine Automation,2016,42(11):1-5.

    [2] 孙继平. 煤矿事故分析与煤矿大数据和物联网[J]. 工矿自动化,2015,41(3):1-5.

    SUN Jiping. Accident analysis and big data and Internet of things in coal mine[J]. Industry and Mine Automation,2015,41(3):1-5.

    [3] 孙继平,钱晓红. 煤矿事故与应急救援技术装备[J]. 工矿自动化,2016,42(10):1-5.

    SUN Jiping,QIAN Xiaohong. Coal mine accident and emergency rescue technology and equipment[J]. Industry and Mine Automation,2016,42(10):1-5.

    [4] 孙继平,钱晓红. 煤矿重特大事故应急救援技术及装备[J]. 煤炭科学技术,2017,45(1):112-116,153.

    SUN Jiping,QIAN Xiaohong. Emergency rescue technology and equipment of mine extraordinary accidents[J]. Coal Science and Technology,2017,45(1):112-116,153.

    [5] 张延松, 王德明, 朱红青. 煤矿爆炸、火灾及其防治技术[M]. 徐州: 中国矿业大学出版社, 2007.

    ZHANG Yansong, WANG Deming, ZHU Hongqing. Coal mine explosion, fire and prevention technology[M]. Xuzhou: China University of Mining and Technology Press, 2007.

    [6] 孙继平,孙雁宇. 矿井火灾监测与趋势预测方法研究[J]. 工矿自动化,2019,45(3):1-4.

    SUN Jiping,SUN Yanyu. Research on methods of mine fire monitoring and trend prediction[J]. Industry and Mine Automation,2019,45(3):1-4.

    [7] 孙继平,孙雁宇,范伟强. 基于可见光和红外图像的矿井外因火灾识别方法[J]. 工矿自动化,2019,45(5):1-5,21.

    SUN Jiping,SUN Yanyu,FAN Weiqiang. Mine exogenous fire identification method based on visible light and infrared image[J]. Industry and Mine Automation,2019,45(5):1-5,21.

    [8] 孙继平,李月. 基于双目视觉的矿井外因火灾感知与定位方法[J]. 工矿自动化,2021,47(6):12-16,78.

    SUN Jiping,LI Yue. Binocular vision-based perception and positioning method of mine external fire[J]. Industry and Mine Automation,2021,47(6):12-16,78.

    [9] 孙继平,崔佳伟. 矿井外因火灾感知方法[J]. 工矿自动化,2021,47(4):1-5,38.

    SUN Jiping,CUI Jiawei. Mine external fire sensing method[J]. Industry and Mine Automation,2021,47(4):1-5,38.

    [10] 孙继平. 煤矿瓦斯和煤尘爆炸感知报警与爆源判定方法研究[J]. 工矿自动化,2020,46(6):1-5,11.

    SUN Jiping. Research on method of coal mine gas and coal dust explosion perception alarm and explosion source judgment[J]. Industry and Mine Automation,2020,46(6):1-5,11.

    [11] 孙继平,范伟强. 基于视频图像的瓦斯和煤尘爆炸感知报警及爆源判定方法[J]. 工矿自动化,2020,46(7):1-4,48.

    SUN Jiping,FAN Weiqiang. Gas and coal dust explosion perception alarm and explosion source judgment method based on video image[J]. Industry and Mine Automation,2020,46(7):1-4,48.

    [12] 孙继平,余星辰. 基于声音识别的煤矿重特大事故报警方法研究[J]. 工矿自动化,2021,47(2):1-5,44.

    SUN Jiping,YU Xingchen. Research on alarm method of coal mine extraordinary accidents based on sound recognition[J]. Industry and Mine Automation,2021,47(2):1-5,44.

  • 期刊类型引用(3)

    1. 侯瑞丽. 基于EMMD-RVM的煤矿采矿机械设备异常检测系统. 能源与环保. 2022(05): 149-155 . 百度学术
    2. 李敬兆,叶桐舟,欧阳其春,王翼宁,陆正兴. 基于TCN的散装物料精准装车系统研究. 煤矿机械. 2021(03): 63-65 . 百度学术
    3. 吴炬华. 基于雾计算的煤矿安全监测系统研究. 煤炭技术. 2021(12): 193-195 . 百度学术

    其他类型引用(3)

图(1)
计量
  • 文章访问数:  318
  • HTML全文浏览量:  115
  • PDF下载量:  58
  • 被引次数: 6
出版历程
  • 收稿日期:  2022-04-01
  • 修回日期:  2022-04-05
  • 网络出版日期:  2022-04-11
  • 刊出日期:  2022-04-24

目录

    /

    返回文章
    返回