Fault line selection method for coal mine power grid based on RCMDE and KFCM
-
摘要: 针对普遍采用谐振接地系统的煤矿电网发生单相接地故障时难以准确选线的问题,提出一种基于精细复合多尺度散布熵( RCMDE)和核模糊C均值聚类( KFCM)的煤矿电网故障选线方法。以幅值、极性和波形相似度作为选线特征量具有以下局限性:基于幅值和极性差异的选线方法适用性有限;若线路中的零序电流互感器极性接反,基于极性的方法直接失效;采样不同步时,基于波形相似度的选线方法难以得到正确结果。为克服上述局限性,引入RCMDE来度量各线路暂态零序电流信号的复杂程度和不规则度,以RCMDE作为选线特征量。采用KFCM算法对RCMDE进行聚类分析,以实现故障线路自动识别,并通过判断轮廓系数是否超过阈值来区分母线故障和馈线故障。最后,通过聚类得到的隶属度矩阵判断馈线故障点所在线路。仿真结果表明:① 故障点所在的故障线路对应的RCMDE曲线与非故障线路间具有较大差异,可分为2类。RCMDE可作为筛选故障线路的特征指标。② 发生母线故障时聚类结果中存在平均轮廓系数小于阈值的分簇,而发生馈线故障时聚类结果各分簇的轮廓系数均大于阈值,在各类故障场景下,基于RCMDE和KFCM的煤矿电网故障选线方法均能实现正确选线,说明其准确性不受故障线路、故障位置、故障合闸角及接地电阻等因素的影响。③ 在噪声干扰情况下,基于RCMDE和KFCM的煤矿电网故障选线方法在小电阻接地或高阻接地情况下均能实现正确选线,具有较强的抗干扰能力。④ 在采样不同步及故障线路零序电流互感器极性反接等情况下,基于RCMDE和KFCM的煤矿电网故障选线方法仍可实现正确选线,选线结果具有较高的鲁棒性。Abstract: It is difficult to accurately select the fault line when the single-phase ground fault occurs in the coal mine power grid with the widely used resonant grounding system. In order to solve the above problem, a fault line selection method of the coal mine power grid based on the refined composite multiscale dispersion entropy (RCMDE) and the kernel fuzzy C-means clustering (KFCM) is proposed. The limitations of using amplitude, polarity and waveform similarity as line selection characteristic quantities: the applicability of the line selection method based on amplitude and polarity difference is limited. If the polarity of the zero sequence current transformer in the line is reversed, the method based on polarity will directly fail. When the sampling is not synchronized, the line selection method based on waveform similarity is difficult to obtain correct results. In order to overcome the above limitations, RCMDE is introduced to measure the complexity and irregularity of the transient zero sequence current signal of each line. RCMDE is used as the characteristic quantity of line selection. The KFCM algorithm is used to cluster the RCMDE to realize the automatic identification of fault lines. The bus fault and feeder fault are distinguished by judging whether the contour coefficient exceeds the threshold value. Finally, the feeder line with the fault point is judged through the membership degree matrix obtained by clustering. The simulation results show the following points. ① The RCMDE curve of the fault line is different from that of the non-fault line, and the curves can be divided into two types. RCMDE can be used as the fault characteristic index of fault line. ② When the bus fault occurs, there are clusters with an average contour coefficient less than the threshold value in the clustering results. However, when feeder fault occurs, the contour coefficients of the clustering results are all greater than the threshold value. Under various fault scenarios, the coal mine power grid fault line selection method based on RCMDE and KFCM can realize correct line selection. The results show that its accuracy is not affected by factors such as fault line, fault location, fault closing angle and grounding resistance. ③ Under the conditions of noise disturbance, the fault line selection method based on RCMDE and KFCM can realize correct line selection in the case of low resistance grounding or high resistance grounding. And the method has a strong anti-interference capability. ④ Under the conditions of asynchronous sampling and reverse polarity of zero-sequence current transformer in the fault line, the method based on RCMDE and KFCM can still realize correct line selection. And the line selection result has high robustness.
-
0. 引言
煤炭是我国主要能源,一次能源占比超60%,是国家能源安全稳定供应的“压舱石”,并且煤炭的主体能源地位短期内无法改变[1-2]。煤炭行业是高危行业,随着煤炭开采深度和强度的增加,煤矿冲击地压和煤与瓦斯突出已成为我国煤炭开采的主要灾害,严重威胁煤矿安全生产[1-2]。
目前煤矿冲击地压和煤与瓦斯突出监测预警方法主要有钻屑法、微震法、声发射法、电磁辐射法、电测法、声波探测法、顶板离层观测法、煤岩体变形测量法、应力监测法及红外辐射法等[3-9],在煤矿安全生产中发挥着重要作用。目前煤矿冲击地压和煤与瓦斯突出监测预警方法通过分析有关参数变化趋势,判断动力灾害发生的危险性和可能性;但无法预报动力灾害发生时间、位置和强度等;在煤矿冲击地压和煤与瓦斯突出发生时,也不能精准报警。目前煤矿冲击地压和煤与瓦斯突出监测预警方法主要用于长期监测预警,指导钻孔卸压和抽采等防治冲击地压和煤与瓦斯突出作业,消除冲击地压和煤与瓦斯突出危险因素,但不能替代煤矿冲击地压和煤与瓦斯突出事故报警。
煤矿冲击地压和煤与瓦斯突出事故诱因复杂,目前致灾机理尚不完全清楚,煤矿冲击地压和煤与瓦斯突出监测预警效果还难以满足我国煤矿安全生产需求,煤矿冲击地压和煤与瓦斯突出事故仍时有发生。目前,煤矿冲击地压事故主要靠人工发现,如果灾源附近人员全部遇难或被困,不在灾源的井下作业人员和地面调度室则不能及时发现灾害并应急救援,进而导致遇险人员窒息或失血过多而死亡,还会引发瓦斯和煤尘爆炸等严重次生事故。及时发现灾害,尽早疏通堵塞巷道和应急救援,争取黄金救援时间,则可减少掩埋和窒息造成的人员死亡,避免或减少瓦斯和煤尘爆炸等次生事故造成的大量人员伤亡,也可有效遏制煤矿冲击地压和煤与瓦斯突出事故的迟报、漏报和瞒报。因此,研究煤矿冲击地压和煤与瓦斯突出感知报警方法,具有重要理论意义和实用价值。
1. 煤矿冲击地压和煤与瓦斯突出事故报警现状
1.1 煤矿冲击地压报警现状
煤矿冲击地压事故感知难。目前仅有基于声音的煤矿冲击地压感知报警的设想[10],但难以排除采掘和运输等声音的影响,并且受声音传播速度慢的影响,响应速度慢。因此,目前煤矿冲击地压主要靠人工发现,还没有自动发现和报警的方法。
1.1.1 煤矿井下人工就地报警
当煤矿井下发生冲击地压事故,事故现场人员发现后,通过矿用调度电话向矿调度室报警。但如果灾源附近人员全部遇难或被困,不在灾源附近的井下作业人员不能尽早发现事故和报警,更不能及时应急救援。
1.1.2 调度室人工查看视频监控报警
目前煤矿井下设有摄像机,当发生事故时,如果调度员正好观察到该摄像机画面,可以发现事故。但煤矿井下摄像机多达数百台,地面调度室的调度员不能同时观察数百台摄像机画面。当冲击地压灾害发生瞬间,地面调度室人员往往不能及时发现和报警。
1.2 煤与瓦斯突出报警现状
目前,煤与瓦斯突出自动报警方法仅有基于甲烷、风速和风向传感器的煤与瓦斯突出自动报警方法[11-12]和基于声音的煤与瓦斯突出感知报警的设想[10]。
1.2.1 基于甲烷、风速和风向传感器的煤与瓦斯突出自动报警方法
基于甲烷、风速和风向传感器的煤与瓦斯突出自动报警方法已推广应用[11-12]。煤与瓦斯突出喷出的瓦斯运移到甲烷传感器时间长,多达数分钟。甲烷传感器将甲烷浓度转换为电信号的响应时间多达20 s。煤与瓦斯突出抛出的煤岩速度快。因此,基于甲烷、风速和风向传感器的煤与瓦斯突出自动报警方法受甲烷运移时间和传感器响应时间等影响,存在响应速度慢、甲烷传感器损毁前监测不到甲烷浓度大幅升高等问题。
基于甲烷、风速和风向传感器的煤与瓦斯突出自动报警方法主要根据甲烷浓度异常变化等进行报警。冲击地压灾害发生时,一般情况不会造成甲烷浓度明显变化。因此,基于甲烷、风速和风向传感器的煤与瓦斯突出自动报警方法不能用于煤矿冲击地压报警。
1.2.2 基于声音的煤与瓦斯突出感知报警的设想
煤与瓦斯突出声音相对采掘和运输等声音较弱。因此,基于声音的煤与瓦斯突出感知报警的设想[10]难以排除采掘和运输等声音的影响,并且受声音传播速度慢的影响,响应速度慢。
2. 煤矿冲击地压和煤与瓦斯突出特征
煤矿冲击地压和煤与瓦斯突出均是由于煤岩体承受压力超过自身强度极限,使得聚集在巷道周围煤岩体中的能量突然释放,导致大量破碎煤岩抛向采掘工作面和巷道空间的煤岩动力灾害。煤矿冲击地压和煤与瓦斯突出虽内在机理不同,但外在显现规律具有相似性[13-15]:① 大量煤岩突然破坏,并抛向采掘工作面和巷道空间。② 大量抛出的破碎煤岩速度较高,可达50 m/s。③ 大量抛出的破碎煤岩在采掘工作面和巷道空间扩散和堆积。④ 造成巷道支护和机电设备等损毁、倾倒、变形和移动。⑤ 造成水管、电缆、瓦斯抽采管路等损毁和坠落。⑥ 造成巷道毁坏及支护、机电设备和人员等被抛出煤岩掩埋。⑦ 造成采掘工作面和巷道空间产生强烈震动和煤岩破碎声响。⑧ 造成矿井风速和空气压力迅速增大后回落,风流反向,通风系统损毁。⑨ 造成采掘工作面和巷道空间产生电磁辐射和红外辐射。⑩ 造成煤矿井下人员伤亡。
冲击地压发生时,瓦斯释放量远小于煤与瓦斯突出,一般情况下甲烷浓度没有明显变化。煤与瓦斯突出发生时,会释放大量瓦斯,巷道中甲烷浓度升高,升高速度及波及范围远大于冲击地压。因此可根据甲烷浓度升高速度和波及范围,区分煤矿冲击地压和煤与瓦斯突出。
3. 煤矿冲击地压和煤与瓦斯突出图像感知报警方法
文献[16]和文献[17]揭示了煤矿冲击地压和煤与瓦斯突出的温度特征:煤矿冲击地压和煤与瓦斯突出抛出的煤岩温度高于巷道、煤壁和已剥离煤岩的温度。文献[18]和文献[19]揭示了煤矿冲击地压和煤与瓦斯突出的颜色特征:煤矿冲击地压和煤与瓦斯突出抛出的煤岩颜色与井下设备非黑色和非褐色有明显差异。文献[20]揭示了煤矿冲击地压和煤与瓦斯突出的深度特征:煤矿冲击地压和煤与瓦斯突出抛出的煤岩深度变化速度高于正常生产和顶板冒落造成的深度变化速度。文献[21]揭示了煤矿冲击地压和煤与瓦斯突出的掩埋特征:煤矿冲击地压和煤与瓦斯突出抛出的煤岩造成的颜色及其图形面积、形状(圆形度、矩形度和面积周长比)变化,不同于正常生产和顶板冒落的变化,其变化速度快、规则度低。
根据煤矿冲击地压和煤与瓦斯突出温度、颜色、深度、掩埋等图像特征[16-21],本文提出了煤矿冲击地压和煤与瓦斯突出图像感知报警方法,流程如图1所示。根据煤矿冲击地压和煤与瓦斯突出温度、颜色、深度、掩埋等图像特征,识别煤矿冲击地压和煤与瓦斯突出;再根据巷道空间和采掘工作面的甲烷浓度变化,区分冲击地压和煤与瓦斯突出,如果甲烷浓度迅速大面积升高,则判定为煤与瓦斯突出,否则判定为冲击地压。
煤矿冲击地压和煤与瓦斯突出图像感知报警方法具有直观、响应速度快、非接触、监测范围广、简单可靠等优点。该方法可直观地记录煤矿冲击地压和煤与瓦斯突出真实情况。当煤矿冲击地压和煤与瓦斯突出事故报警后,调度室值班人员可通过录像,立即确认事故,及时进行应急救援。
4. 减少煤矿冲击地压和煤与瓦斯突出抛出的煤岩对图像感知影响的方法
煤矿冲击地压和煤与瓦斯突出抛出的煤岩,会造成摄像机和传感器损毁。为减少煤矿冲击地压和煤与瓦斯突出抛出的煤岩对图像感知的影响,本文提出了减少煤矿冲击地压和煤与瓦斯突出抛出的煤岩对图像感知影响的方法,具体内容如下。
1) 摄像机多点布置。煤矿冲击地压和煤与瓦斯突出的发生是一个短时、急剧而又猛烈的过程,可造成数百米范围内的巷道和设备损坏。为防止煤矿冲击地压和煤与瓦斯突出抛出的煤岩造成摄像机损毁或失效,摄像机应多点布置。摄像机应安装在掘进工作面、掘进巷道中间和入口,回采工作面、进风巷道中间和入口,主运输大巷和辅助运输大巷等地点。煤矿冲击地压和煤与瓦斯突出发生时,靠近灾源附近的摄像机会被损毁,但离灾源较远的摄像机会被保存下来,用于动力灾害感知报警。
2) 摄像机设置在较高位置。在同样条件下,靠近顶板的位置受煤矿冲击地压和煤与瓦斯突出抛出的煤岩影响小。因此,摄像机应设置在巷道顶板、巷道两帮靠近顶板、液压支架顶部及液压立柱靠近顶部等较高位置,以减小煤矿冲击地压和煤与瓦斯突出抛出的煤岩影响。
3) 视频数据及时传输。光信号传播速度远大于煤矿冲击地压和煤与瓦斯突出抛出的煤岩速度。因此,抛出的煤岩到达摄像机之前,摄像机已采集到煤矿冲击地压和煤与瓦斯突出图像。光信号和电信号传输速度远大于煤矿冲击地压和煤与瓦斯突出抛出的煤岩速度。因此,及时通过光缆和电缆等传输视频数据,可以在摄像机及线缆(电缆和光缆)损毁前,将已采集到的图像信号传输到地面,用于煤矿冲击地压和煤与瓦斯突出感知报警。
4) 甲烷传感器多点布置。甲烷传感器应设置在掘进工作面及其回风流、采煤工作面及其回风巷和进风巷、总回风巷等地点,感知瓦斯是否大范围大幅升高。如果甲烷浓度均大幅升高,则判定为煤与瓦斯突出;否则,判定为冲击地压。当然,煤矿冲击地压和煤与瓦斯突出抛出的煤岩会造成传感器损毁或失效,但未被损毁或失效的传感器可用于煤矿冲击地压和煤与瓦斯突出感知报警。
5. 结论
1) 煤矿冲击地压和煤与瓦斯突出自动感知报警方法是及时发现事故并应急救援,减少人员伤亡,避免或减少瓦斯和煤尘爆炸等次生事故发生,有效遏制事故迟报、漏报和瞒报的有效措施。
2) 煤矿冲击地压事故特征感知难,目前仅有基于声音的煤矿冲击地压感知报警的设想,但难以排除采掘和运输等声音的影响,并且受声音传播速度慢的影响,响应速度慢。因此,目前煤矿冲击地压主要靠人工发现,还没有自动发现和报警的方法。
3) 目前,煤与瓦斯突出自动报警方法仅有基于甲烷、风速和风向传感器的煤与瓦斯突出自动报警方法和基于声音的煤与瓦斯突出感知报警的设想。但基于甲烷、风速和风向传感器的煤与瓦斯突出自动报警方法存在响应速度慢、甲烷传感器损毁前监测不到甲烷浓度大幅升高等问题;基于声音的煤与瓦斯突出感知报警的设想难以排除采掘和运输等声音的影响,并且受声音传播速度慢的影响,响应速度慢。
4) 提出了煤矿冲击地压和煤与瓦斯突出图像感知报警方法:根据煤矿冲击地压和煤与瓦斯突出温度、颜色、深度、掩埋等图像特征,识别煤矿冲击地压和煤与瓦斯突出;再根据巷道空间和采掘工作面的甲烷浓度变化,区分冲击地压和煤与瓦斯突出,如果甲烷浓度大面积迅速升高,则判定为煤与瓦斯突出,否则判定为冲击地压。该方法具有直观、响应速度快、非接触、监测范围广、简单可靠等优点,可直观地记录煤矿冲击地压和煤与瓦斯突出真实情况;当煤矿冲击地压和煤与瓦斯突出事故报警后,调度室值班人员可以通过录像,立即确认事故,及时进行应急救援。
5) 提出了减少煤矿冲击地压和煤与瓦斯突出抛出的煤岩对图像感知影响的方法:摄像机多点布置,摄像机设置在较高位置,视频数据及时传输,甲烷传感器多点布置等。
-
表 1 电缆线路参数
Table 1 Parameter of cable line
相序 单位长度电阻/ (Ω·km−1) 单位长度电感/ (mH·km−1) 单位长度电容/ (μF·km−1) 正序 0.270 0.255 0.339 零序 2.700 1.019 0.280 表 2 所提方法在各类故障场景下的选线结果
Table 2 Line selection results of the proposed method in various fault scenarios
故障线路 故障位置/ km α0/ (°) Rf / Ω 隶属度矩阵U 各簇平均轮廓系数 选线结果 线路1 0.2 0 0.001 $\left[ {\begin{array}{*{20}{l}} {\bf {{{1}}{{.000\;0}}} }&{{{0}}{{.003\;0}}}&{{{0}}{{.002\;4}}}&{{{0}}{{.000\;9}}} \\[2.9pt] {{{0}}{{.000\;0}}}&{\bf {{{0}}{{.997\;0}}} }&{\bf {{{0}}{{.997\;6}}} }&{\bf {{{0}}{{.999\;1}}} } \end{array}} \right]$ $ \left[ {\begin{array}{*{20}{c}} {{1}} \\[2.9pt] {{{0}}{{.994\;7}}} \end{array}} \right] $ 线路1 0.3 60 50 $\left[ {\begin{array}{*{20}{l}} {{{0}}{{.000\;0}}}&{\bf {{{0}}{{.998\;3}}} }&{\bf {{{0}}{{.996\;9}}} }&{\bf {{{0}}{{.999\;1}}} } \\[2.9pt] {\bf {{{1}}{{.000\;0}}} }&{{{0}}{{.001\;7}}}&{{{0}}{{.003\;1}}}&{{{0}}{{.000\;9}}} \end{array}} \right]$ $ \left[ {\begin{array}{*{20}{c}} {{{0}}{{.996\;0}}} \\[2.9pt] {{1}} \end{array}} \right] $ 线路1 0.4 90 5 000 $\left[ {\begin{array}{*{20}{l}} {{{0}}{{.000\;0}}}&{\bf {{{0}}{{.999\;4}}} }&{\bf {{{0}}{{.999\;7}}} }&{\bf {{{0}}{{.999\;8}}} } \\[2.9pt] {\bf {{{1}}{{.000\;0}}} }&{{{0}}{{.000\;6}}}&{{{0}}{{.000\;3}}}&{{{0}}{{.000\;2}}} \end{array}} \right]$ $ \left[ {\begin{array}{*{20}{c}} {{{0}}{{.999\;1}}} \\[2.9pt] {{1}} \end{array}} \right] $ 线路1 线路3 0.3 75 50 $\left[ {\begin{array}{*{20}{l}} {{{0}}{{.016\;8}}}&{{{0}}{{.000\;7}}}&{\bf {{{0}}{{.998\;0}}} }&{{{0}}{{.001\;1}}} \\[2.9pt] {\bf {{{0}}{{.983\;2}}} }&{\bf {{{0}}{{.999\;3}}} }&{{{0}}{{.002\;0}}}&{\bf {{{0}}{{.998\;9}}} } \end{array}} \right]$ $ \left[ {\begin{array}{*{20}{c}} 1 \\[2.9pt] {{{0}}{{.986\;1}}} \end{array}} \right] $ 线路3 0.7 15 800 $\left[ {\begin{array}{*{20}{l}} {{{0}}{{.001\;3}}}&{{{0}}{{.001\;3}}}&{\bf {{{1}}{{.000\;0}}} }&{{{0}}{{.000\;8}}} \\[2.9pt] {\bf {{{0}}{{.998\;7}}} }&{\bf {{{0}}{{.998}}\;7} }&{{{0}}{{.000\;0}}}&{\bf {{{0}}{{.999\;2}}} } \end{array}} \right]$ $ \left[ {\begin{array}{*{20}{c}} {{1}} \\[2.9pt] {{{0}}{{.999\;6}}} \end{array}} \right] $ 线路3 1.2 45 6 000 $ \left[ {\begin{array}{*{20}{l}} {\bf {{{0}}{{.999\;3}}} }&{\bf {{{0}}{{.999\;4}}} }&{{{0}}{{.000\;0}}}&{\bf {{{0}}{{.998\;8}}} } \\[2.9pt] {{{0}}{{.000\;7}}}&{{{0}}{{.000\;6}}}&{\bf {{{1}}{{.000}} \;0} }&{{{0}}{{.001\;2}}} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} {{{0}}{{.998\;2}}} \\[2.9pt] 1 \end{array}} \right] $ 线路3 母线0 — 0 5 $ \left[ {\begin{array}{*{20}{l}} {\bf {{{0}}{{.936\;0}}} }&{{{0}}{{.354\;9}}}&{{{0}}{{.045\;3}}}&{{{0}}{{.041\;3}}} \\[2.9pt] {{{0}}{{.064\;0}}}&{\bf {{{0}}{{.645\;1}}} }&{\bf {{{0}}{{.954\;7}}} }&{\bf {{{0}}{{.958\;7}}} } \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} {{1}} \\[2.9pt] {{{0}}{{.712\;9}}} \end{array}} \right] $ 母线0 — 45 200 $\left[ {\begin{array}{*{20}{l}} {{{0}}{{.216\;4}}}&{\bf {{{0}}{{.826\;6}}} }&{\bf {{{0}}{{.707\;4}}} }&{\bf {{{0}}{{.804\;3}}} } \\[2.9pt] {\bf {{{0}}{{.783\;6}}} }&{{{0}}{{.173\;4}}}&{{{0}}{{.292\;6}}}&{{{0}}{{.195\;7}}} \end{array}} \right]$ $ \left[ {\begin{array}{*{20}{c}} {{{0}}{{.739\;3}}} \\[2.9pt] {{1}} \end{array}} \right] $ 母线0 — 90 4 000 $ \left[ {\begin{array}{*{20}{l}} {\bf {{{0}}{{.932\;3}}} }&{{{0}}{{.426\;9}}}&{{{0}}{{.101\;7}}}&{{{0}}{{.016\;5}}} \\[2.9pt] {{{0}}{{.067\;7}}}&{\bf {{{0}}{{.573\;1}}} }&{\bf {{{0}}{{.898\;3}}} }&{\bf {{{0}}{{.983\;5}}} } \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} {{1}} \\[2.9pt] {{{0}}{{.640\;7}}} \end{array}} \right] $ 母线0 表 3 噪声干扰下的选线结果
Table 3 Line selection results with noise disturbance
Rf / Ω 隶属度
矩阵U各簇平均
轮廓系数选线
结果0.001 $\left[ {\begin{array}{*{20}{l}} {\bf {{{0}}{{.984\;1}}} }&{{{0}}{{.000\;2}}}&{\bf {{{0}}{{.984\;0}}} }&{\bf {{{0}}{{.997\;7}}} } \\ {{{0}}{{.015\;9}}}&{\bf {{{0}}{{.999\;8}}} }&{{{0}}{{.016\;0}}}&{{{0}}{{.002\;3}}} \end{array}} \right]$ $ \left[ {\begin{array}{*{20}{c}} {{{0}}{{.966\;1}}} \\ {{1}} \end{array}} \right] $ 线路2 100 $\left[ {\begin{array}{*{20}{l}} {{\bf{0}}{\bf{.995\;6}}}&{{{0}}{{.022\;3}}}&{\bf {{{0}}{{.991\;5}}} }&{\bf {{{0}}{{.981\;8}}} } \\ {{{0}}{{.004\;4}}}&{\bf {{{0}}{{.977\;7}}} }&{{{0}}{{.008\;5}}}&{{{0}}{{.018\;2}}} \end{array}} \right]$ $ \left[ {\begin{array}{*{20}{c}} {{{0}}{{.985\;0}}} \\ {{1}} \end{array}} \right] $ 线路2 10000 $\left[ {\begin{array}{*{20}{l}} {{\bf{0}}{\bf{.966\;7}}}&{{{0}}{{.001\;2}}}&{\bf {{{0}}{{.989\;3}}} }&{\bf {{{0}}{{.978\;5}}} } \\ {{{0}}{{.033}}\; {3}}&{\bf {{{0}}{{.998\;8}}} }&{{{0}}{{.010\;7}}}&{{{0}}{{.021\;5}}} \end{array}} \right]$ $ \left[ {\begin{array}{*{20}{c}} {{{0}}{{.937\;8}}} \\ {{1}} \end{array}} \right] $ 线路2 表 4 采样不同步时的选线结果
Table 4 Line selection results under asynchronous sampling
Rf / Ω 隶属度
矩阵U各簇平均
轮廓系数选线
结果5 $ \left[ {\begin{array}{*{20}{l}} {\bf {{{0}}{{.985\;6}}} }&{\bf {{{0}}{{.984\;5}}} }&{\bf {{{0}}{{.997\;7}}} }&{{{0}}{{.000\;2}}} \\ {{{0}}{{.014\;4}}}&{{{0}}{{.015\;5}}}&{{{0}}{{.002\;3}}}&{\bf {{{0}}{{.999\;8}}} } \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} {{{0}}{{.968\;1}}} \\ {{1}} \end{array}} \right] $ 线路4 800 $ \left[ {\begin{array}{*{20}{l}} {{{0}}{{.000\;3}}}&{{{0}}{{.000\;5}}}&{{{0}}{{.000\;6}}}&{\bf {{{1}}{{.000\;0}}} } \\ {\bf {{{0}}{{.999\;7}}} }&{\bf {{{0}}{{.999\;5}}} }&{\bf {{{0}}{{.999\;4}}} }&{{{0}}{{.000\;0}}} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} {{1}} \\ {{{0}}{{.999\;6}}} \end{array}} \right] $ 线路4 5 000 $ \left[ {\begin{array}{*{20}{l}} {{{0}}{{.011\;7}}}&{{{0}}{{.013\;2}}}&{{{0}}{{.006\;7}}}&{\bf {{{0}}{{.946\;9}}} } \\ {\bf {{{0}}{{.988\;3}}} }&{\bf {{{0}}{{.986\;8}}} }&{\bf {{{0}}{{.993\;3}}} }&{{{0}}{{.053\;1}}} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} 1 \\ {{{0}}{{.998\;1}}} \end{array}} \right] $ 线路4 表 5 极性反接时的选线结果
Table 5 Line selection results with anti-polarity
Rf / Ω 隶属度
矩阵U各簇平均
轮廓系数选线
结果0.001 $ \left[ {\begin{array}{*{20}{l}} {\bf {{{0}}{{.995\;0}}} }&{\bf {{{0}}{{.994\;8}}} }&{{{0}}{{.012\;6}}}&{\bf {{{0}}{{.995\;4}}} } \\ {{{0}}{{.005\;0}}}&{{{0}}{{.005\;2}}}&{\bf {{{0}}{{.987\;4}}} }&{{{0}}{{.004\;6}}} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} {{{0}}{{.999\;9}}} \\ 1 \end{array}} \right] $ 线路3 60 $ \left[ {\begin{array}{*{20}{l}} {\bf {{{0}}{{.997\;9}}} }&{\bf {{{0}}{{.999\;0}}} }&{{{0}}{{.000\;0}}}&{\bf {{{0}}{{.998\;7}}} } \\ {{{0}}{{.002\;1}}}&{{{0}}{{.001\;0}}}&{\bf {{{1}}{{.000\;0}}} }&{{{0}}{{.001\;3}}} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} {{{0}}{{.998\;3}}} \\ {{1}} \end{array}} \right] $ 线路3 6 000 $ \left[ {\begin{array}{*{20}{l}} {{{0}}{{.000\;6}}}&{{{0}}{{.000\;8}}}&{\bf {{{0}}{{.999\;9}}} }&{{{0}}{{.000\;9}}} \\ {\bf {{{0}}{{.999\;4}}} }&{\bf {{{0}}{{.999\;2}}} }&{{{0}}{{.000\;1}}}&{\bf {{{0}}{{.999\;1}}} } \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} {{{0}}{{.999\;1}}} \\ {{1}} \end{array}} \right] $ 线路3 -
[1] 高宏杰,赵建文,郭秀才. 煤矿电网单相漏电故障区段自动定位探索[J]. 工矿自动化,2021,47(5):106-111. GAO Hongjie,ZHAO Jianwen,GUO Xiucai. Research on automatic location of single-phase leakage fault zone in coal mine power network[J]. Industry and Mine Automation,2021,47(5):106-111.
[2] LIU Penghui,DU Shaotong,SUN Kang,et al. Single-line-to-ground fault feeder selection considering device polarity reverse installation in resonant grounding system[J]. IEEE Transactions on Power Delivery,2021,36(4):2204-2212. DOI: 10.1109/TPWRD.2020.3022422
[3] NIU Lin,WU Guiqing,XU Zhangsheng. Single-phase fault line selection in distribution network based on signal injection method[J]. IEEE Access,2021,9:21567-21578. DOI: 10.1109/ACCESS.2021.3055236
[4] 张利,杨以涵,杨秀媛,等. 移动式比相法配电网接地故障定位研究[J]. 中国电机工程学报,2009,29(7):91-97. DOI: 10.3321/j.issn:0258-8013.2009.07.015 ZHANG Li,YANG Yihan,YANG Xiuyuan,et al. Method of mobile phase-comparison for fault location of distribution network[J]. Proceeding of the CSEE,2009,29(7):91-97. DOI: 10.3321/j.issn:0258-8013.2009.07.015
[5] 孙其东,张开如,刘建,等. 基于五次谐波和小波重构能量的配电网单相接地故障的选线方法研究[J]. 电测与仪表,2016,53(16):1-4. DOI: 10.3969/j.issn.1001-1390.2016.16.001 SUN Qidong,ZHANG Kairu,LIU Jian,et al. Research on single-phase fault earth fault line selection method for the distribution network based on fifth harmonics and wavelet reconstruction[J]. Electrical Measurement & Instrumentation,2016,53(16):1-4. DOI: 10.3969/j.issn.1001-1390.2016.16.001
[6] 栾晓明,武守远,贾春娟,等. 基于改进零序导纳法的单相接地故障选线原理[J]. 电网技术,2022,46(1):353-360. DOI: 10.13335/j.1000-3673.pst.2021.0425 LUAN Xiaoming,WU Shouyuan,JIA Chunjuan,et al. Fault line selection principle of single-phase-to-ground fault based on improved zero-sequence admittance[J]. Power System Technology,2022,46(1):353-360. DOI: 10.13335/j.1000-3673.pst.2021.0425
[7] 束洪春,龚振,田鑫萃,等. 基于故障特征频带及形态谱的单相接地故障选线[J]. 电网技术,2019,43(3):1041-1053. SHU Hongchun,GONG Zhen,TIAN Xincui,et al. Single line-to-ground fault line selection based on fault characteristic frequency band and morphological spectrum[J]. Power System Technology,2019,43(3):1041-1053.
[8] 魏向向,温渤婴. 基于2阶累加生成相关性的谐振接地系统故障选线方法[J]. 电网技术,2017,41(5):1674-1682. WEI Xiangxiang,WEN Boying. A novel fault line detection method based on 2-order accumulated generating operation correlation analysis for resonant earthed system[J]. Power System Technology,2017,41(5):1674-1682.
[9] 于群,尚雪丽. 一种矿井漏电保护选线方法[J]. 工矿自动化,2020,46(11):17-22. YU Qun,SHANG Xueli. A line selection method of mine leakage protection[J]. Industry and Mine Automation,2020,46(11):17-22.
[10] 邓丰,梅龙军,唐欣,等. 基于时频域行波全景波形的配电网故障选线方法[J]. 电工技术学报,2021,36(13):2861-2870. DENG Feng,MEI Longjun,TANG Xin,et al. Faulty line selection method of distribution network based on time-frequency traveling wave panoramic waveform[J]. Transactions of China Electrotechnical Society,2021,36(13):2861-2870.
[11] 王建元,朱永涛,秦思远. 基于方向行波能量的小电流接地系统故障选线方法[J]. 电工技术学报,2021,36(19):4085-4096. WANG Jianyuan,ZHU Yongtao,QIN Siyuan. Fault line selection method for small current grounding system based on directional traveling wave energy[J]. Transactions of China Electrotechnical Society,2021,36(19):4085-4096.
[12] 陈奎,韦晓广,陈景波,等. 基于样本数据处理和ADABOOST的小电流接地故障选线[J]. 中国电机工程学报,2014,34(34):6228-6237. CHEN Kui,WEI Xiaoguang,CHEN Jingbo,et al. Fault line detection using sampled data processing and ADABOOST for small current grounding system[J]. Proceeding of the CSEE,2014,34(34):6228-6237.
[13] 殷浩然,苗世洪,郭舒毓,等. 基于S变换相关度和深度学习的配电网单相接地故障选线新方法[J]. 电力自动化设备,2021,41(7):88-96. DOI: 10.16081/j.epae.202105028 YIN Haoran,MIAO Shihong,GUO Shuyu,et al. Novel method for single-phase grounding fault line selection in distribution network based on S-transform correlation and deep learning[J]. Electric Power Automation Equipment,2021,41(7):88-96. DOI: 10.16081/j.epae.202105028
[14] 郝帅,张旭,马瑞泽,等. 基于改进GoogLeNet的小电流接地系统故障选线方法[J]. 电网技术,2022,46(1):361-368. HAO Shuai,ZHANG Xu,MA Ruize,et al. Fault line selection method for small current grounding system based on improved GoogLeNet[J]. Power System Technology,2022,46(1):361-368.
[15] HAMED A,MOSTAFA R,DANI A,et al. Refined composite multiscale dispersion entropy and its application to biomedical signals[J]. IEEE Transactions on Biomedical Engineering,2017,64(12):2872-2879. DOI: 10.1109/TBME.2017.2679136
[16] ROSTAGHI M,AZAMI H. Dispersion entropy:a measure for time-series analysis[J]. IEEE Signal Processing Letters,2016,23(5):610-614. DOI: 10.1109/LSP.2016.2542881
[17] 何玉灵,孙凯,王涛,等. 基于变分模态分解与精细复合多尺度散布熵的发电机匝间短路故障诊断[J]. 电力自动化设备,2021,41(3):164-172. DOI: 10.16081/j.epae.202101014 HE Yuling,SUN Kai,WANG Tao,et al. Fault diagnosis of generator interturn short circuit fault based on variational mode decomposition and refined composite multiscale dispersion entropy[J]. Electric Power Automation Equipment,2021,41(3):164-172. DOI: 10.16081/j.epae.202101014
[18] 李从志,郑近德,潘海洋,等. 基于精细复合多尺度散布熵与支持向量机的滚动轴承故障诊断方法[J]. 中国机械工程,2019,30(14):1713-1719,1726. LI Congzhi,ZHENG Jinde,PAN Haiyang,et al. Fault diagnosis method of rolling bearings based on refined composite multiscale dispersion entropy and support vector machine[J]. China Mechanical Engineering,2019,30(14):1713-1719,1726.
[19] LIU Jingwei,XU Meizhi. Kernelized fuzzy attribute C-means clustering algorithm[J]. Fuzzy Sets and Systems,2008,159(18):2428-2445. DOI: 10.1016/j.fss.2008.03.018
[20] 郭谋发. 配电网单相接地故障人工智能选线[M]. 北京: 中国水利水电出版社, 2020. GUO Moufa. Artificial intelligence line selection of single-phase grounding fault in distribution network[M]. Beijing: China Water & Power Press, 2020.
[21] 卢丹. 基于WAMS的矿井高压电网单相接地故障选线及定位方法研究[D]. 北京: 中国矿业大学(北京), 2015. LU Dan. Study on single-phase earth fault line detection and fault location method of coal mine high-voltage grid base on WAMS[D]. Beijing: China University of Mining & Technology-Beijing, 2015.
-
期刊类型引用(4)
1. 薛乃凡,李庆民,刘智鹏,常亚楠,梁瑞雪. 微纳粉尘运动行为与微弱放电探测技术研究进展. 电工技术学报. 2022(13): 3380-3392 . 百度学术
2. 丁云峰,郭永兴,陈先锋,杨冰涛,熊丽. 粉尘质量浓度的光纤光栅传感测量技术. 爆炸与冲击. 2019(01): 86-91 . 百度学术
3. 黎胜龙,黄强,叶南海,程思凯. 散状物料含水率-粉尘量关系测试实验研究. 有色冶金节能. 2018(03): 28-31 . 百度学术
4. 王杰,郑林江. 煤矿粉尘职业危害监测技术及其发展趋势. 煤炭科学技术. 2017(11): 119-125 . 百度学术
其他类型引用(3)