基于随机森林算法的煤自燃温度预测模型研究

郑学召, 李梦涵, 张嬿妮, 姜鹏, 王宝元

郑学召,李梦涵,张嬿妮,等.基于随机森林算法的煤自燃温度预测模型研究[J].工矿自动化,2021,47(5):58-64.. DOI: 10.13272/j.issn.1671-251x.17700
引用本文: 郑学召,李梦涵,张嬿妮,等.基于随机森林算法的煤自燃温度预测模型研究[J].工矿自动化,2021,47(5):58-64.. DOI: 10.13272/j.issn.1671-251x.17700
ZHENG Xuezhao, LI Menghan, ZHANG Yanni, JIANG Peng, WANG Baoyuan. Research on the prediction model of coal spontaneous combustion temperature based on random forest algorithm[J]. Journal of Mine Automation, 2021, 47(5): 58-64. DOI: 10.13272/j.issn.1671-251x.17700
Citation: ZHENG Xuezhao, LI Menghan, ZHANG Yanni, JIANG Peng, WANG Baoyuan. Research on the prediction model of coal spontaneous combustion temperature based on random forest algorithm[J]. Journal of Mine Automation, 2021, 47(5): 58-64. DOI: 10.13272/j.issn.1671-251x.17700

基于随机森林算法的煤自燃温度预测模型研究

基金项目: 

国家自然科学基金资助项目(51674191)

详细信息
  • 中图分类号: TD752

Research on the prediction model of coal spontaneous combustion temperature based on random forest algorithm

  • 摘要: 针对传统煤自燃温度预测模型预测精度较差、基于支持向量机(SVM)的预测模型对参数的选取要求较高和基于神经网络的预测模型测试时易出现过拟合的问题,提出了一种基于随机森林算法的煤自燃温度预测模型。利用煤自燃程序升温实验选取O2浓度、CO浓度、C2H4浓度、CO/ΔO2比值、C2H4/C2H6比值作为煤自燃预警指标数据,并对指标数据进行处理,将数据分为学习集和测试集;对学习集抽样形成决策树并按决策树最优特征分裂形成随机森林;采用均方误差值和判定系数(R2)优化随机森林算法的参数,进而构建随机森林模型;将测试集数据输入已训练好的随机森林模型,得到煤自燃温度预测结果。模型对比结果表明:与基于粒子群优化反向传播(PSO-BP)神经网络算法和基于SVM算法的煤自燃温度预测模型相比,随机森林测试阶段的R2为0.869 7,PSO-BP测试阶段的R2为0.783 6,SVM测试阶段的R2为0.835 0,说明基于随机森林算法的煤自燃温度预测模型能够较为准确地对煤自燃温度进行预测,具有较强的鲁棒性和普适性,解决了基于PSO-BP神经网络算法的煤自燃温度预测模型和基于SVM算法的煤自燃温度预测模型容易出现过拟合的问题。
    Abstract: The prediction accuracy of the traditional coal spontaneous combustion temperature prediction model is poor. The requirement of parameter selection for the prediction model based on support vector machine (SVM) is high. And neural network-based prediction model is prone to overfitting. In order to solve the above problems, a prediction model of coal spontaneous combustion temperature based on random forest algorithm is proposed. The model uses the coal spontaneous combustion temperature program experiment to select O2 concentration, CO concentration, C2H4 concentration, CO/ΔO2 ratio and C2H4/C2H6 ratio as coal spontaneous combustion warning index data, processes the index data and divides the data into learning set and test set. The learning set is sampled to form a decision tree and split according to the optimal characteristics of the decision tree to form a random forest. The parameters of the random forest algorithm are optimized by the mean square error value and the determination coefficient (R2) to construct the random forest model. The test set data is input into the trained random forest model to obtain the prediction result of coal spontaneous combustion temperature. The model comparison results show that compared with the coal spontaneous combustion temperature prediction model based on the particle swarm optimization-back propagation(PSO-BP) neural network algorithm and the support vector machine algorithm, the R2 value in the random forest test phase is 0.869 7, the R2 value in the PSO-BP test phase is 0.783 6, and the R2 value in the SVM test phase is 0.835 0. The results shows that the prediction model of coal spontaneous combustion temperature based on RF algorithm can predict coal spontaneous combustion temperature more accurately and has strong robustness and universality. The model solves the problem that the prediction model of coal spontaneous combustion temperature based on PSO-BP neural network algorithm and the prediction model of coal spontaneous combustion temperature based on SVM algorithm are prone to overfitting.
  • 期刊类型引用(14)

    1. 郑肖,蒋磊,朱挺,刘亚强. 基于人工智能的企业项目云数据自动化共享系统. 电子设计工程. 2025(05): 59-64 . 百度学术
    2. 谭章禄,王美君,叶紫涵. 智能化煤矿数据治理方法论体系与实施框架. 煤炭科学技术. 2025(01): 284-295 . 百度学术
    3. 陈铁华,王晓敏,李红霞. 区块链赋能视角下煤矿生产安全监管演化博弈研究. 煤炭技术. 2024(01): 269-272 . 百度学术
    4. 黎亦凡,郭一鸣,高琦,欧晓勇,姜帆. 基于密文属性加密的发变组故障录波数据访问控制方法研究. 电子器件. 2024(05): 1355-1361 . 百度学术
    5. 赵建文,孟旭辉. 数字孪生在煤矿电网中的应用研究. 工矿自动化. 2023(02): 38-46 . 本站查看
    6. 喻燕华. 基于RBAC模型的网络安全访问控制系统. 信息与电脑(理论版). 2023(03): 120-122 . 百度学术
    7. 刘秉峰,韩智伟. 基于区块链的医院数据库安全访问控制方法. 现代信息科技. 2023(08): 48-50 . 百度学术
    8. 李蕾,孙歆. 基于角色划分的多源异构数据库安全访问控制. 自动化与仪器仪表. 2023(05): 56-59+64 . 百度学术
    9. 李忠奎,吴文臻,王乐军,张子良. 基于边缘计算的煤矿安全监控分站设计研究. 煤炭技术. 2023(12): 241-245 . 百度学术
    10. 王爱兵. 社区矫正系统用户隐私信息安全保护技术. 数字技术与应用. 2023(12): 225-227 . 百度学术
    11. 霍跃华,赵法起,吴文昊. 多特征融合的煤矿网络加密恶意流量检测方法. 工矿自动化. 2022(07): 142-148 . 本站查看
    12. 沈斌,焦玉良,何洪涛,陈业青. 基于区块链金融的政府采购融资平台设计与实现. 武汉工程大学学报. 2022(04): 439-444 . 百度学术
    13. 张立亚,李晨鑫,刘斌,姜玉峰. 矿山物联网区块链机制研究. 工矿自动化. 2022(08): 10-15 . 本站查看
    14. 王彦. 基于区块链的数据访问控制方法研究. 信息与电脑(理论版). 2022(23): 19-21 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  128
  • HTML全文浏览量:  15
  • PDF下载量:  14
  • 被引次数: 17
出版历程
  • 刊出日期:  2021-05-19

目录

    /

    返回文章
    返回