基于灰度共生矩阵与回归分析的矿井水灾感知

曹玉超

曹玉超.基于灰度共生矩阵与回归分析的矿井水灾感知[J].工矿自动化,2020,46(9):94-97.. DOI: 10.13272/j.issn.1671-251x.17678
引用本文: 曹玉超.基于灰度共生矩阵与回归分析的矿井水灾感知[J].工矿自动化,2020,46(9):94-97.. DOI: 10.13272/j.issn.1671-251x.17678
CAO Yuchao. Mine flood perception based on gray level co-occurrence matrix and regression analysis[J]. Journal of Mine Automation, 2020, 46(9): 94-97. DOI: 10.13272/j.issn.1671-251x.17678
Citation: CAO Yuchao. Mine flood perception based on gray level co-occurrence matrix and regression analysis[J]. Journal of Mine Automation, 2020, 46(9): 94-97. DOI: 10.13272/j.issn.1671-251x.17678

基于灰度共生矩阵与回归分析的矿井水灾感知

基金项目: 

国家重点研发计划资助项目(2016YFC0801800)

详细信息
  • 中图分类号: TD745

Mine flood perception based on gray level co-occurrence matrix and regression analysis

  • 摘要: 针对图像识别用于矿井水灾感知时存在识别率低、稳定性和时效性差等问题,提出了一种基于灰度共生矩阵与回归分析的矿井水灾感知方法。计算样本图像的灰度共生矩阵,提取灰度共生矩阵的对比度、差异性、齐次性、熵、相关性、能量作为特征值并组成特征向量;以样本图像的特征向量到非线性回归方程的最小距离之和最大为依据确定分类器,通过分类器识别水灾。实验结果表明,对于分辨率为256×256的图像,该方法在无烟煤、砂岩、突涌水组成的数据集上的识别率为96.33%,单张图像平均耗时16.288 5 ms。
    Abstract: Aiming at problems of low recognition rate and poor stability and timeliness when image recognition was used in mine flood perception, a mine flood perception method based on gray level co-occurrence matrix and regression analysis was proposed. Gray co-occurrence matrix of sample image is calculated, and contrast, dissimilarity, homogeneity, entropy, correlation and energy of the gray co-occurrence matrix are extracted as eigenvalues to form eigenvectors. The classifier is determined based on the sum of the minimum distance from the eigenvector of the sample image to nonlinear regression equation, and flood is identified by the classifier. The experimental results show that recognition rate of the method on data set composed of anthracite, sandstone and surging water is 96.33% for image with resolution of 256×256, and average time-consuming of single image is 16.288 5 ms.
  • 期刊类型引用(5)

    1. 连会青,康佳,尹尚先,徐斌,闫国成,夏向学,徐保同. 煤矿井下顶板突水征兆视频智能识别方法研究. 煤矿安全. 2025(04): 166-173 . 百度学术
    2. 孙继平,余星辰,王云泉. 基于声谱图和SVM的煤矿瓦斯和煤尘爆炸识别方法. 煤炭科学技术. 2023(02): 366-376 . 百度学术
    3. 朱继文,席志龙,陈景珏. 基于Sentinel-1A数据的随机森林武穴市水体信息提取. 黑龙江工程学院学报. 2022(03): 1-6 . 百度学术
    4. 林刚,冯浩,曹利钢,潘海鹏,曹旭明. 多尺度特征融合的陶瓷盘缺陷检测算法的研究. 陶瓷学报. 2021(01): 143-149 . 百度学术
    5. 郭前进,孙园,许佩婷,龙玥. 基于经验与灰度共生矩阵的花蛤辨识方法. 厦门理工学院学报. 2021(05): 67-75 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  89
  • HTML全文浏览量:  17
  • PDF下载量:  11
  • 被引次数: 11
出版历程
  • 刊出日期:  2020-08-19

目录

    /

    返回文章
    返回