基于相关向量机的煤自燃预测方法

刘宝, 穆坤, 叶飞, 汪帆, 王静婷

刘宝,穆坤,叶飞,等.基于相关向量机的煤自燃预测方法[J].工矿自动化,2020,46(9):104-108.. DOI: 10.13272/j.issn.1671-251x.17578
引用本文: 刘宝,穆坤,叶飞,等.基于相关向量机的煤自燃预测方法[J].工矿自动化,2020,46(9):104-108.. DOI: 10.13272/j.issn.1671-251x.17578
LIU Bao, MU Kun, YE Fei, WANG Fan, WANG Jingting. Prediction method of coal spontaneous combustion based on relevance vector machine[J]. Journal of Mine Automation, 2020, 46(9): 104-108. DOI: 10.13272/j.issn.1671-251x.17578
Citation: LIU Bao, MU Kun, YE Fei, WANG Fan, WANG Jingting. Prediction method of coal spontaneous combustion based on relevance vector machine[J]. Journal of Mine Automation, 2020, 46(9): 104-108. DOI: 10.13272/j.issn.1671-251x.17578

基于相关向量机的煤自燃预测方法

基金项目: 

国家自然科学基金资助项目(61703329)

中国博士后科学基金资助项目(2018M633538)

西安市科技计划项目(2020KJRC0068)

陕西省教育厅科研计划项目(18JK1005)

陕西省教育科学“十三五”规划课题(SGH18H159)

陕西省重点研发计划项目(2019GY-097)

陕西省重点产业链项目(2019ZDLGY15-04-02)。

详细信息
  • 中图分类号: TD712.5

Prediction method of coal spontaneous combustion based on relevance vector machine

  • 摘要: 在煤自燃程度预测方面,基于径向基(RBF)神经网络的方法结构复杂、易陷入局部最优,基于支持向量机(SVM)方法的核函数受Mercer条件限制而对参数敏感,传统的机器学习方法误差较大。针对上述问题,提出了一种基于相关向量机(RVM)的煤自燃预测方法。以易发生煤自燃现象的亭南煤矿为例,模拟煤样自燃升温过程并采集气体浓度与煤自燃温度数据,建立训练样本和测试样本;由训练样本构建RVM模型,得到模型的最优参数;将测试样本代入已训练的RVM模型中,预测煤自燃温度值。与基于RBF神经网络和SVM的煤自燃预测方法进行比较,结果表明,基于RBF神经网络和SVM的煤自燃预测方法训练误差较小,但测试误差较大,说明这2种方法存在过拟合现象,泛化能力差;基于RVM的煤自燃预测方法的训练误差与测试误差比较接近且预测精度最高。
    Abstract: In terms of coal spontaneous combustion degree prediction, the radial basis function (RBF) neural network method is complex in structure and easy to fall into local optimum, the kernel function based on support vector machine (SVM) is sensitive to parameters due to Mercer condition, the traditional machine learning method has a large error. For the above problems, a coal spontaneous combustion prediction method based on relevance vector machine (RVM) is proposed. Taking Tingnan Coal Mine which is prone to spontaneous combustion as an example, the temperature rising process of coal sample spontaneous combustion is simulated, and the data of gas concentration and coal spontaneous combustion temperature are collected to establish training samples and test samples. The RVM model is constructed from the training samples, and the optimal parameters of the model are obtained. The test samples are substituted into the trained RVM model to predict coal spontaneous combustion temperature. Compared with coal spontaneous combustion prediction methods based on RBF neural network and SVM, the results show that the coal spontaneous combustion prediction methods based on RBF neural network and SVM have small training error but large test error, which indicates that the two methods have over fitting phenomenon and poor generalization ability. The training error and test error of the coal spontaneous combustion prediction method based on RVM are close and prediction accuracy is the highest.
  • 期刊类型引用(11)

    1. 陈韬,张幼振,许超. 煤矿井下钻进工况智能识别算法研究与应用. 煤矿安全. 2025(03): 242-249 . 百度学术
    2. 王德飞,王湛岩,赵志刚,孟智勇,彭孝东. 基于波门控制策略的激光角度欺骗干扰概率研究. 光学与光电技术. 2024(06): 96-102 . 百度学术
    3. 佘建煌. 多模式特征增强卷积的带式输送机异物检测模型. 矿山机械. 2023(04): 47-53 . 百度学术
    4. 杨波. 基于大数据分析的煤矿通风自动控制系统. 能源与环保. 2023(08): 39-44 . 百度学术
    5. 李红岩,杨朝旭,荣相,史晗,王越,刘宝,王磊. 矿用逆变器功率器件故障预测与健康管理技术现状及展望. 工矿自动化. 2022(05): 15-20 . 本站查看
    6. 李曼,潘楠楠,段雍,曹现刚. 煤矿旋转机械健康指标构建及状态评估. 工矿自动化. 2022(09): 33-41 . 本站查看
    7. 李海龙. 基于Revit的煤矿变频带式输送机电机驱动控制系统设计. 煤矿机械. 2022(12): 31-35 . 百度学术
    8. 冯源琪,左弯弯,王金川,杨梦莹,张建文. 基于小波包和分形维数的瓦斯传感器状态评估方法研究. 电气防爆. 2021(03): 1-6+10 . 百度学术
    9. 杜京义,陈瑞,郝乐,史志芒. 煤矿带式输送机异物检测. 工矿自动化. 2021(08): 77-83 . 本站查看
    10. 洪涛,张富强. 基于端对端最优功率的成套连采系统设计. 吉林大学学报(信息科学版). 2021(06): 675-681 . 百度学术
    11. 赵炳文,郭栋,王亮,祝菁,刘航,李幸,边帅. 井下车辆智能调度系统的设计及应用. 能源技术与管理. 2021(06): 27-30 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  103
  • HTML全文浏览量:  16
  • PDF下载量:  15
  • 被引次数: 15
出版历程
  • 刊出日期:  2020-08-19

目录

    /

    返回文章
    返回